
B The Template Layer

B/introt: Introduction.i6t A short introduction to the template and its organisation.
B/maint: Main.i6t The top-level logic of NI: the sequence of operations followed by NI up to the point
where the output file is opened, resuming after it is closed again.
B/lcore: Load-Core.i6t To load the core language definition for Inform, which means creating the basis for
its hierarchy of kinds.
B/ltims: Load-Times.i6t To load the Times of Day language definition element.
B/lacts: Load-Actions.i6t To load the Actions language definition element.
B/lscen: Load-Scenes.i6t To load the Scenes language definition element.
B/lfigs: Load-Figures.i6t To load the Figures language definition element.
B/lsnd: Load-Sounds.i6t To load the Sounds language definition element.
B/lfile: Load-Files.i6t To load the Files language definition element.
B/outt: Output.i6t This is the superstructure of the file of I6 code output by NI: from ICL commands at
the top down to the signing-off comments at the bottom.
B/defnt: Definitions.i6t Miscellaneous constant definitions, usually providing symbolic names for otherwise
inscrutable numbers, which are used throughout the template layer.
B/ordt: OrderOfPlay.i6t The sequence of events in play: the Main routine which runs the startup rulebook,
the turn sequence rulebook and the shutdown rulebook; and most of the I6 definitions of primitive rules in
those rulebooks.
B/actt: Actions.i6t To try actions by people in the model world, processing the necessary rulebooks.
B/acvt: Activities.i6t To run the necessary rulebooks to carry out an activity.
B/rbt: Rulebooks.i6t To work through the rules in a rulebook until a decision is made.
B/parst: Parser.i6t The parser for turning the text of the typed command into a proposed action by the
player.
B/lwt: ListWriter.i6t A flexible object-lister taking care of plurals, inventory information, various formats
and so on.
B/oowt: OutOfWorld.i6t To implement some of the out of world actions.
B/wmt: WorldModel.i6t Testing and changing the fundamental spatial relations.
B/light: Light.i6t The determination of light, visibility and physical access.
B/testt: Tests.i6t The command grammar and I6 implementation for testing commands such as TEST,
ACTIONS and PURLOIN.
B/langt: Language.i6t The fundamental definitions needed by the parser and the verb library in order to
specify the language of play – that is, the language used for communications between the story file and the
player.
B/stackt: MStack.i6t To allocate space on the memory stack for frames of variables to be used by rulebooks,
activities and actions.
B/chrt: Chronology.i6t To record information now which will be needed later, when a condition phrased in
the perfect tense is tested.
B/print: Printing.i6t To manage the line skips which space paragraphs out, and to handle the printing of
names of objects, pieces of text and numbers.



Appendix B: The Template Layer §95 2

B/rtpt: RTP.i6t To issue run-time problem messages, and to perform some run-time type checking which
may issue such messages.
B/utilt: Utilities.i6t Miscellaneous utility routines for some fundamental I6 needs.
B/numt: Number.i6t Support for parsing integers.
B/timet: Time.i6t Support for parsing and printing times of day.
B/tabt: Tables.i6t To read, write, search and allocate rows in the Table data structure.
B/sortt: Sort.i6t To sort arrays.
B/relt: Relations.i6t To manage run-time storage for relations between objects, and to find routes through
relations and the map.
B/figst: Figures.i6t To display figures and play sound effects.
B/inxt: IndexedText.i6t Code to support the indexed text kind of value.
B/regxt: RegExp.i6t Code to match and replace on regular expressions against indexed text strings.
B/chart: Char.i6t To decide whether letters are upper or lower case, and convert between the two.
B/unict: UnicodeData.i6t To tabulate casings in the character set.
B/stact: StoredAction.i6t Code to support the stored action kind of value.
B/listt: Lists.i6t Code to support the list of... kind of value constructor.
B/combt: Combinations.i6t Code to support the combination kind of value constructor.
B/relkt: RelationKind.i6t Code to support the relation kind.
B/blkvt: BlockValues.i6t Routines for copying, comparing, creating and destroying block values, and for
reading and writing them as if they were arrays.
B/flext: Flex.i6t To allocate flexible-sized blocks of memory as needed to hold arbitrary-length strings of
text, stored actions or other block values.
B/zmt: ZMachine.i6t To provide routines handling low-level Z-machine facilities.
B/glut: Glulx.i6t To start up the Glk interface for the Glulx virtual machine, and provide Glulx-specific
printing functions.
B/iot: FileIO.i6t Reading and writing external files, in the Glulx virtual machine only.



Introduction Template B/introt

Purpose
A short introduction to the template and its organisation.

B/introt.§1 The Software Stack; §2 Segments and Paragraphs; §3 Architecture

§1. The Software Stack. The term “software stack” is sometimes used to refer to the total body of
code running in a computer. As the word “stack” implies, there tends to be a fairly clear division between
components, and an architecture in which one component is supported by another. The ground on which
the stack rests is the hardware. Then come device drivers, for communicating with hardware, and a kernel
of very low-level code to regulate who talks to the hardware and when. On top of that are usually several
layers of operating-system facilities and utility programs, and on top of all of that are Firefox, iTunes and
other consumer programs which the user has made a conscious decision to run. These top-level programs
are visible, while the lower layers are concealed from the user and are generally very reliable, so it is easy to
forget that they are there at all.
Similarly, when writing and testing a work with I7, it’s easy to think that the only code running is the
code directly generated by the source text. In fact, though, it runs inside a simulated computer called the
virtual machine (or VM), and the VM has a software stack just as other computers do. Here the distinction
between “program” and “operating system” is more blurred, because it can afford to be – the VM only ever
has a single program running, and is not connected to any valuable hardware or data, so there is no need
to protect the system’s integrity from a malicious program, or to protect one program from the failings of
another running at the same time. But there is still a recognisable software stack. From top to bottom, the
VM at run-time contains:
(a) The rules, text and tables written by the author of this specific work of IF;
(b) Material contributed by Extensions which the author chose to borrow from;
(c) Rules, phrases and other constructions made by the Standard Rules extension, whose use is compulsory;

(d1) Infrastructure for rulebooks and code for maintaining a world model common to all works of IF;
(d2) The code needed to manage complex data structures such as relations, tables, indexed text, and so on;
(e) The interface to the VM, which is abstracted so that higher levels do not need to know whether Glulx

or the Z-machine is being used.
Here (d1) and (d2) are independent blocks, so the picture is roughly so:

the player typing at a keyboard
(a) MATERIAL WRITTEN BY THE AUTHOR
(b) EXTENSIONS CHOSEN BY THE AUTHOR

(c) THE STANDARD RULES
(d1) MECHANICS OF PLAY (d2) DATA STRUCTURE SUPPORT

(e) VIRTUAL MACHINE INTERFACE
virtual machine “hardware”

NI is not like a compiler for a conventional program, because it has to conjure up the entire software stack
whenever it compiles anything. (Until 2008, NI compiled code which ran on top of the traditional I6 library:
nowadays it compiles stand-alone code which never uses the #Include directive. While it’s true that the I6
compiler does add a very thin extra layer of code itself – the “veneer” – in all other respects NI specifies
every single line of I6 code which makes up the eventual story file.)
NI compiles layers (a), (b) and (c) from the I7 source text found in the project file, in the Extensions installed
by the user, and in the Standard Rules extension which comes pre-installed. But parts (d1), (d2) and (e) are
almost exactly the same I6 code whatever may be sitting above them: they are simply copied, with minor
variations, from a large body of standing code installed in the I7 application which is called the “template”.



B/introt - Introduction Template §2 4

§2. Segments and Paragraphs. The template is divided into about 40 individual “segments”, each
stored in its own file and with the .i6t file extensions. This stands for “I6 template”, because the code
generated by NI is Inform 6 (I6) code. What makes the file a template rather than being raw code is that
it is divided into named paragraphs which contain both commentary and also I6 code: when NI turns a
template into the output code, the commentary (and each paragraph heading) is stripped out.
See the Inform documentation for how to modify the template in use for any particular project: I6 code
can be added before, instead of or after any named segment or paragraph, and in addition, it’s possible to
replace entire segment files with your own versions stored in the Materials folder for a project.

§3. Architecture. To recap, then, the template contributes the following parts of the software stack:
(d1) MECHANICS OF PLAY (d2) DATA STRUCTURE SUPPORT

(e) VIRTUAL MACHINE INTERFACE
A more detailed version of this diagram organises its segments follows:
NI Control. Main.i6t, Load-Core.i6t (and several others like it), Output.i6t, Definitions.i6t.
Mechanics of Play I: Rules. OrderOfPlay.i6t, Actions.i6t, Activities.i6t, Rulebooks.i6t.
II: Infrastructure. Parser.i6t, ListWriter.i6t, OutOfWorld.i6t, WorldModel.i6t, Light.i6t, Tests.i6t.
III: Basic Services. Language.i6t, MStack.i6t, Chronology.i6t, Printing.i6t, RTP.i6t, Utilities.i6t.
Data Structure Support I: Basics. Number.i6t, Time.i6t, Tables.i6t, Sort.i6t, Relations.i6t, Figures.i6t.
II: Block Values. IndexedText.i6t, RegExp.i6t, Char.i6t, UnicodeData.i6t, StoredAction.i6t, Lists.i6t,
RelationKind.i6t, BlockValues.i6t, Flex.i6t.
Virtual Machine Interface. ZMachine.i6t or Glulx.i6t and FileIO.i6t.
To elaborate:
NI Control. As well as containing commentary and I6 code, template files can also contain commands to tell
NI to do something more interesting than simply copying over material verbatim into its output. Four of
the segments use this ability a great deal: the remaining segments hardly use it at all. These four segments
therefore don’t fit anywhere in the diagram of the software stack above. “Main.i6t” controls the top-level
logic of NI and gives the sequence of operations; “Load-.i6t” specifies the basic kinds of value known to NI –
numbers, times, texts, rulebooks and so on; “Output.i6t” is essentially the arrangement used to join all the
many fragments of I6 from the template and the I7 source text into a single end-to-end I6 program which will
become the story file; “Definitions.i6t” defines many named constants which are used across the template.
Mechanics of Play I: Rules. “OrderOfPlay.i6t” is the highest-level description of what happens when a
story file runs: it contains the I6 Main routine, and definitions of the primitive rules in the most important
rulebooks.
“Actions.i6t” and “Activities.i6t” contain code which runs actions and activities, respectively: these sit on
top of “Rulebooks.i6t”, which performs general rulebook-running.
Mechanics of Play II: Infrastructure. “Parser.i6t” breaks down a command typed by the player into a slate of
variables which can be formed into an action. “ListWriter.i6t” is a general-purpose service for printing lists
of objects satisfying various descriptions, and formatted in different ways. “OutOfWorld.i6t” provides code
to handle out-of-world actions not needing direct access to VM internals: PRONOUNS and SUPERBRIEF,
for instance. “Tests.i6t” provides code for the testing commands – TEST, ACTIONS, SHOWME and so
forth.
“WorldModel.i6t” contains code for performing object movements and the like in such a way that the world
model rules are preserved: it handles component parts, decides touchability and so on. “Light.i6t” determines
the level of light and decides on visibility.
Mechanics of Play III: Basic Services. “Language.i6t” provides English-language messages issued by tem-
plate routines and the Standard Rules during play: replacing this segment is the way to translate I7 story files
into other languages of play. (It’s the equivalent of the old I6 “language definition files”, and retains most
of the same structure.) “MStack.i6t” provides a small general-purpose memory stack. “Chronology.i6t”
performs the continuous monitoring required to ensure that past-tense conditions work: for instance we



B/introt - Introduction Template §3 5

can only determine whether or not “the Black Door has been open” if we have spent the whole time so
far checking on whether it is open or not, and this is where the checking is done. “Printing.i6t” handles
paragraph-breaking, the printing of object names with suitable articles attached, and miscellaneous other
printing needs. “RTP.i6t” issues run-time problem messages as needed: these should appear only if the story
file does something clearly illegal, and point to bugs not yet removed from the author’s code. “Utilities.i6t”
provides miscellaneous utility functions at a very low level, such as for unsigned comparison of two numbers.
Data Structure Support I: Basics. Many kinds of value need no maintenance, and little or no support.
“Number.i6t” and “Time.i6t” contain code to parse numbers and times of day from text typed by the
player, together with a few basic operations: for instance, the rounding off of times of day. “Tables.i6t”
provides access to table entries, specified in a variety of direct and indirect ways; this makes use of “Sort.i6t”,
which abstracts a choice of sorting algorithms for use on tables and other I6 data. “Relations.i6t” provides
code for testing and asserting relations: the information about what is related to what else is stored in a
variety of different ways, depending on the relation, to make best use of memory. “Figures.i6t” displays
figures and plays back sound effects, or rather, passes instructions to do so down to the VM.
Data Structure Support II: Block Values. Kinds of value can be divided into the ordinary ones – number,
object, time and so on – together with “block values” such as indexed text, stored action and list. Block values
have to be stored in dynamically allocated memory from a heap. It would be wasteful to include all of this
code, and to spare memory for the heap, if no block values were actually needed, so the following segments
are only compiled if the source text makes specific reference to at least one block value. “IndexedText.i6t”
manages character-indexed strings of text, which can shrink or stretch to arbitrary lengths: it makes use of
“RegExp.i6t” for regular expression matching and search-and-replace; and also of “Char.i6t” for code to deal
with lower and upper casing of letters, and “UnicodeData.i6t” to provide character set details, mechanically
converted from the Unicode 4.0 standard. “StoredAction.i6t” manages stored actions: it can convert the
current action into a stored one, and also try a long-stored action so that it now takes place. “Lists.i6t”
manages the flexibly sized lists produced by values whose kind is list of numbers, list of texts, list of lists of
lists of stored actions, and so forth: it can merge, insert, delete, resize, rotate, and reverse lists, and makes
use once again of “Sort.i6t” (q.v.) to sort them.
“BlockValues.i6t” provides the basic support for kinds of value which are stored as blocks of memory on the
heap.
At the lowest level, “Flex.i6t” manages flexible memory allocation as required by “BlockValues.i6t”: it
organises the heap of unclaimed memory, for instance, and maks allocations and deallocations when needed.
Virtual Machine Interface. Depending on the Settings used for the I7 project being compiled, we either use
“ZMachine.i6t” or “Glulx.i6t”: if Glulx, we also add “FileIO.i6t”, which provides support for the limited
file-handling abilities offered by Glulx.
Properly speaking, there is one further template file: “Introduction.i6t”. It provides the commentary you
are now reading, but has no other function, contains no code, and is finished now anyway.


