
,/ \
' .. :" :" .
. \ .

Cambridge

MDL

Primer and Manual

(for versions 54 and 104)

S. W. Galley and Greg Pfiater

Laboratory for Computer Science

Massachusetts Institute of Technology

Massachusetts 02139

2

Abstraot

MOL began existence in late 1970 (under the name Muddle) as a successor to Lisp (ref 6), a candidate
vehicle for the Dynamic Modeling S.ystem, and a possible base for implementation of Planner (ref
5). The original design goals included an interactive integrated environment for programming,
debugging, loading, and editing; ease in learning and use; facilities for structured, modular. shared
programs; extensibility of syntax, data types and operators; data-type checking for debugging and
optional data-type declarations for compiled efficiency; associative storage, multiprocessing. and
graphics. Along the way to reaching those goals, it developed flexible input/output (including the
ARPA Network). and flexible interrupt and signal handling. It now serves as a base for software
prototyping. research. development. education. and implementation of the majority of programs at
MIT ·DMS: a Jibrary of sharable modules, a coherent user interf.'lce, special research projects.
autonomous daemons. etc.

This document was originally intended to be a simple low-level introduction to MOL. It has.
ho\vever. acquired a case of elephantiasis and now amounts to a discursive description of the whole
interpreter. as realized in MOL version number 54 (ITS) or 104 (TENEX). A low.level introduction
may still be had by restricting one's attention to specially-marked sections only. The scope of the
document is confined as much as possible to the interpreter itself. Other adjuncts (compiler.
assembler. preloaded user programs, library) are mentioned as little as possible, despite their vahll" in
promoting the language seen by a user from "basic survival" to "comfortable living". Indeed. MOL
could not fulfill the above design goals without the compiler, assembler. structure editor. control
stack printer. context printer. pretty-printer, dynamic loader. and library system .. all of which are
not part of the interpreter but programs written in MOL and symbiotic with one another. Further
information on these adjuncts can be found in the references.

J i~ '.1 .~.
, ·.\1. 0

(c) Copyright 1977 Massachusetts Institute of Technology. All rights reserved.

Aoknowledgements

I was not a member of the original group which labored for two years in the design and initial
implementation of Muddle; that group was composed principally of Gerald Sussman. Carl Hewitt.
Chris Reeve. Dave Creuey, and later Bruce Daniels. I would therefore like to take this opportunity
to thank my Muddle mentors, chiefly Chris Reeve and Bruce Daniels, for remaining civil through
several months of verbal badgering. I believe that I learned more than "just another programming
language- in learning Muddle, and I am grateful for this opportunity to pass on some of that
knowledge. What I cannot pass on is the knowledge gained by using Muddle as a system: that I can
only ask you to share.

For editing the content of this document and correcting some misconceptions, I would like to thank
Chris Reeve. Bruce Daniels and especially Gerald Sussman, one of whose good ideas I finally did use.

Greg Pfister
December 15, 1972

Since Greg Jeft the fold, I have taken up the banner and updated his document. The main sources
for small revisions have been the on·line file of changes to MDL, for which credit goes to Neal
Ryan as well as Reeve and Daniels, and the set of on·line abstracts for interpreter Subroutines.
contributed by unnamed members of the Programming Technology Division. Some new sections
were written almost entirely by others: Dave Lebling wrote chapter 14 and appendix 3, Jim Michener
section 14.3. Reeve chapter 19 and appendix I, Daniels and Reeve appendix 2. Brian Berkowitz
section 22.7. Tak To section 17.2.2. and Ryan sectio,n 17.1.3. Sue Pitkin did the tedious task
of marking phrases in the manuscript for indexing. PiUs JarViS and Jack Haverty advised on the
use of PUB and the XCP. Many PTD people commented helpfully on a draft version.

. . .

My task has been to impose some uniformity and structure on these diverse sources (50 that the
result sounds less like a dozen hackers typing at a dozen consoles for a dozen days) and to enjoy
some of the richness of MDL from the inside. I especially thank Chris Reeve ("the oracle") for the
patience to answer questions and resolve doubts, as he no doubt has done innumerable times before.

S. W. Galley
May 16.1977

This work was supported by the Advanced Research Projects Agency of the Department of Defense
and was monitored by the Office of Naval Research under contract N00014.75·C·0661.

This document was prepared using the PUB system (originally from the Stanford Artificial
Intelligence Laboratory) and printed on the Xerox Craphics Printer of the M.I.T. Artificial
Intelligence Laboratory.

4

Foreword

Trying to explain MDL to an uninitiate is somewhat like trying to untie a Gordian knot. Whatever
topic one chooses to discuss first, full discussion of it appears to imply discussion of everything
else. What follows Is a discursive presentation of MOL in an order hopefu)]y requiring the fewest
forward references. It is not perfect in that regard; however, if you are patient and willing to
accept a few. stated things as "magic" until they can be explained better. you will probably not have
too many problems understanding what is going on.

There are no "practice problems"; you are assumed to be learning MDL for some purpose. and your
work in achieving that purpose will be more useful and motivated than artificial problems. In
several cases. the examples contain illustrations of important points which are not covered in the
text. Ignore examples at your peril.

This document does not assume knowledge of any specific programming language on the part of
the reader. However, "computational literacy" is assumed: the reader should have written at least one
program before. Also, very little familiarity with ITS or TENEX - the time-sharing operating
systems under which MDL runs -- is assumed. namely just file and user naming conventions.

Notation:

Sections marked [1] are recommended for an uninitiate's first reading, in lieu of a separate
introduction or primer for MDL. [On first reading. text within brackets like these should be
ignored.]

Most specifically indicated examples herein are composed of pairs of lines. The first line of a pair
always ends in $ (which is how the ASCII character ESC is represented, and which always represents
it); this is the input. The second line is the result of MOL's groveling over the first. If you were to
type all the first lines at MOL. it would respond with all the second lines. (More exactly. the "first
line" is an object in MOL (sometimes with an associated comment) followed by $. and the "second
line" is everything up to but not including the next "first line".)

Anything which is written in the MDL language or which is typed on a computer console appears
herein in a gothic font, as in ROOT. A metasyntactic variable - something to be replaced in actual
use by something else - appears as /ooJ<up:oblist. in an italic font; often the variable will have both a
meaning and a data type (as here). but sometimes one of those will be omitted. for obvious reasons.

An ellipsis (•••) indicates that something uninteresting has been omitted. The character A means
that the following character is to be "controlified": it is usually typed by holding down a console's
CTRL key and striking the other key.

Page Name

16 I. Basic Interaction
20 2. Read. Evaluate. and Print
27 3. Built-in Functions
30 4. Values of Atoms
35 5. Simple Functions
43 6. Data Types
51 7. Structured Objects
69 8. Truth
76 9. Functions
87 10. Looping
97 11. Input/Output

116 12. Locatives
120 13. Association (Properties)
124 14. Data-type Declarations
137 15. Lexical BJocking
146 16. Errors. Frames. etc.
152 17. Macro-operations
159 18. Machine Words and Bits
162 19. CompiJed Programs
168 20. Multiprocessing
176 21. Interrupts
189 22. Storage Management
197 23. MDL as an ITS Job

List of Ohapters

200 24. Efficiency and Tastefulness

5

6

List of Seotions

Page Section

16 Chapter 1. Basic Interaction
16 1.1 Loading MDL [1]
16 1.2 Typing [1]
18 1.3 Loading a File [1]
18 1.4 Errors - Simple Considerations [1]

20 Chapter 2. Read. Evaluate. and Print
20 2.1 General [1]
20 2.2 Philosophy (TYPEs) [1]
21 2.3 Example (TYPE FIX) [1]
22 2.4 Example (TYPE FLOAT) [1]
22 2.5 Example (TYPE ATOM, PNAME) [1]
22 2.6 FIXes, FLOATs. and ATOMs versus READ: Specifics
22 2.6.1 READ and FIXed-point Numbers
23 2.6.2 READ and PRINT versus FLOATing-point Numbers
24 2.6.3 READ and PNAMEs
24 2.6.3.1 Non-PNAMEs
24 2.6.3.2 Examples
25 2.6.3.3 \ (Backslash) in ATOMs
26 2.6.3.4 Examples of Awful ATOMs

27 Chapter 3. Built-in Functions
27 3.1 Representation [1]
27 3.2 Evaluation [1]
28 3.3 Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]
28 3.4 Examples (+ and FIX; Arithmetic) [1]
29 3.5 Arithmetic: Details

30 Chapter 4. Values of Atoms
30 4.1 General [1]
30 4.2 Global Values
30 4.2.1 SETG [1]
31 4.2.2 GVAL [1]
31 4.2.3 Note on SUBRs and FSUBRs
32 4.2.4 GUNASSIGN
32 4.3 Local Values
32 4.3.1 SET [1]
32 4.3.2 LVAL [1]
33 4.3.3 UNASSIGN
33 4.4 VALUE

List of Sections

35 Chapter 5. Simple Functions
35 S.1 General [1]
35 5.2 Representation [1]
36 5.3 Application of FUNCTIONs; Binding [1]
39 5.4 Defining FUNCTIONs (FUNCTION and DEFINE) [1]
40 5.5 Examples (Comments) [1]

43 Chapter 6. Data Types
43 6.1 General [1]
4' 6.2 Printed Representation [1]
44 6.3 SUBRs Related to TYPEs
44 6.3.1 TYPE [I]
44 6.3.2 PRIHTYPE [1]
45 6.'.3 TYPEPRIM [1]
45 6.3.4 CHTYPE [1]
46 6.4 More SUBRs Related to TYPEs
46 6.4.1 ALL TYPES
46 6.4.2 VALID-TYPE?
46 6.4.3 NEWTYPE
47 6.4.4 PRINTTYPE. EVALTYPE and APPLYTYPE

51 Chapter 7. Structured Objects
51 7.1 Manipulation
51 7.1.1 LENGTH [1]
51 7.1.2 NTH [I]
52 7.1.' REST [1]
52 7.1.4 PUT [1]
52 7.1.5 GET
52 7.1.6 SUBSTRUC
IS
53
53
53
53
!is
54
54
54
55
55
55
56
56
57
57

7.2 Representation of Basic Structures
7.2.1 LIST [1]
7.2.2 VECTOR [1]
7.2.' UVECTOR [1]
7.2.4 STRING [1]
7.2.5 BYTES
7.2.6 TEMPLATE

7.S Evaluation of Basic Structures [1]
7.4 Examples [1]
7.5 Generation of Basic Structures

7.5.1 Direct Representation [1]
7.5.2 QUOTE [1]
7.5.' LIST, VECTOR, UVECTOR, and STRING (the SUBRI) [1]
7.5.4 ILIST, IVECTOR, IUVECTOR, and ISTRING [1]
7.5.5 FORM and IFORM

7.6 Unique Properties of Primitive TYPEs

List of Sections

7

8

57 7.6.1 LIST (the PRIMTYPE) [1]
57 7.6.1.1 PUTREST [1]
58 7.6.1.2 CONS
58 7.6.2 "Array" PRIMTYPEs [1]
58 7.6.2.1 BACK [1]
59 7.6.2.2 TOP [1]
59 7.6.3 ·Vector" PRIMTYPEs
59 7.6.3.1 GROW
60 7.6.3.2 SORT
61 7.6.4 VECTOR (the PRIMTYPE) [1]
61 7.6.5 UVECTOR (the PRIMTYPE) [1]
62 7.6.5.1 UTYPE [1]
62 7.6.5.2 CHUTYPE [1]
63 7.6.6 STRING (the PRIMTYPE) and CHARACTER [1]
63 7.6.6.1 ASCII [1]
63 7.6.6.2 PARSE [1]
64 7.6.6.3 LPARSE [1]
64 7.6.6.4 UNPARSE [1]
64 7.6.7 BYTES
65 7.6.8 TEMPLATE
65 7.7 SEGMENTs [1]
65 7.7.1 Representation [1]
65 7.7.2 Evaluation [1]
66 7.7.3 Examples [1]
66 7.7.4 Note on Efficiency [1]
67 7.7.5 SEGMENTs in FORMs [1]
68 7.8 Self-referencing Structures
68 7.8.1 Self-subset
68 7.8.2 Self-element

69 Chapter 8. Truth
69 8.1 Truth Values [1]
69 8.2 Predicates [1]
69 8.2.1 Arithmetic [1]
70 8.2.2 Equality and Membership [1]
71 8.2.3 Boolean Operators [1]
72 8.2.4 Object Properties [1]
73 8.3 COND [1]
73 8.3.1 Examples [1]
74 8.4 Shortcuts with Conditionals
74 8.4.1 AND and OR as Short CONOs
75 8.4.2 Embedded Unconditionals

76 Chapter 9. Functions
76 9.1 "OPTIONAL II [1]

List of Sections

77 9.2 TUPLEs
77 9.2.1 "TUPLE" and TUPLE (the TYPE) [1]
78 9.2.2 TUPLE (the SUBR) and ITUPLE
79 9.3 NAUX" [1]
80 9.4 QUOTEd arguments [1]
80 9.5 II ARGS II [1]
81 9.6 ·CALL·
81 9.7 EVAL and HBIND"
82 9.7.1 Local Values versus ENVIRONMENTs
82 9.8 ACTIVATION, HNAMP, "ACT", AGAIN, and RETURN [1]
84 9.9 Argument List Summary
86 9.10 APPLY [1]
86 9.11 CLOSURE

87 Chapter 10. Looping
87 10.1 PROG and REPEAT [1]
87 10.1.1 Basic EVALuation [1]
88 10.1.2 AGAIN and RETURN in PROG and REPEAT [1]
88 10.I.S Examples [1]
89 10.2 HAPF and MAPR: Basics [1]
90 10.2.1 HAPF [1]
90 10.2.2 "APR [1]
90 10.2.S Examples [1]
92 10.S More on MAPF and MAPR
92 10.S.1 MAPRET
93 10.S.2 MAPSTOP
9S 10.3.3 MAPLEAVE
93
94
95
96

10.3.4 Only two arguments
10.4 STACKFORM
10.5 GO and TAG
10.6 Looping versus Recursion

97 Chapter 11. Input/Output
97 11.1 Conversion I/O
97 11.1.1 Input
98 11.1.1.1 READ
98 11.1.1.2 READCHR
98 11.1.1.3 NEXTCHR
98 11.1.2 Output
98 11.1.2.1 PRINT
98 11.1.2.2 PRINI
99 11.1.2.3 PRINC
99 11.1.2.4 TERPRI
99 11.1.2.5 CRLF
99 11.1.2.6 FLATSIZE

List of Sections

9

10

100 11.2 CHANNEL (the TYPE)
100 11.2.1 OPEN
102 11.2.2 OPEN-NR
102 11.2.3 CHANNEL (the SUBR)
102 11.2.4 CLOSE
102 11.2.5 CHANLIST
102 11.2.6 INCHAN and OUTCHAN
103 11.2.7 Contents of CHANNEls
lOS 11.2.7.1 Output CHANNEls
104 11.2.7.2 Input CHANNEls
104 11.3 End-of-File "Routine"
105 11.4 Imaged 1/0
105 11.4.1 Input
105 11.4.1.1 READB
105 11.4.1.2 READSTRING
105 11.4.2 Output
105 11.4.2.1 PRINTS
105 11.4.2.2 PRINTSTRING
106 11.4.2.3 IMAGE
106 11.5 Dumped 1/0
106 11.5.1 Output: GC-DUMP
106 11.5.2 Input: GC-READ
107 11.6 SAVE Files
107 11.6.1 SAVE
108 11.6.2 RESTORE
108 11.7 Other 1/0 Functions
108 11.7.1 LOAD
109 11.7.2 FLOAD
109 11.7.3 SNAME
109 11.7.4 ACCESS
109 11.7.5 FILE-LENGTH
110 11.7.6 FILECOPY
110 11.7.7 RESET
110 11.7.8 BUFOUT
110 11.7.9 RENAME
111 11.8 Console CHANNEls
112 11.8.1 ECHOPAIR
112 11.8.2 TTYECHO
112 11.8.3 TYI
112 11.9 Internal CHANNEls
113 11.10 "DISPLAY" CHANNEls
113 11.10.1 D ISPLA Y
113 11.10.2 ERASE
11S 11.11 The "NEP Devicel the ARPA Network
114 11.11.1 NETSTATE

List of Sections

114 11.11.2 NETACC
115 11.11.3 NETS

116 Chapter 12. Locatives
116 12.1 Obtaining Locative.s
116 12.1.1 LLOC
117 12.1.2 GLOC
117 12.1.S AT
117 12.1.4 GETPL and GETL
117 12.2 LOCATIVE?
118 12.3 Using Locatives
118 12.S.1 IN
118 12.S.2 SETLOC
119 12.4 Note on Locatives

120 Chapter IS. Association (Properties)
120 IS.1 Associative Storage
120 IS.I.1 PUT PROP
120 U.1.2 PUT
120 IS.1.S Removing Associations
121 IS.2 Associative Retrieval
121 IS.2.1 GETPROP
121 IS.2.2 GET
121 IS.S Examples of Association
12S IS.4 Examining Association,

124 Chapter 14. Data-type Declarations
125 14.1 Patterns
128 14.2 Examples
129 14.S The DECL Syntax
130 14.4 Good DECLs
131 14.5 Global DECLs
lSI 14.5.1 GDECL and MANIFEST
132 14.5.2 MANIFEST? and UNMANIFEST
132 14.5.S GBOUND?
lS2 14.6 NEWTYPE (again)
ISS 14.7 Controlling DECL Checking
ISS 14.7.1 DECL-CHECK
IS4 14.7.2 SPECIAL-CHECK and SPECIAL-MODE
IS4 14.7.3 GET-DECL and PUT-DECL
135 14.7.4 DECL?
135 14.8 The RSUBR DECL

137 Chapter 15. Lexical Blocking
IS7 15.1 Basic Considerations

List of Section,

11

12

15.2 OBLISTs
15.2.1 OBLIST Names
15.2.2 MOBLIST
15.2.3 OBLIST?

15.3 READ and OBLISTs
15.S.1 Trailers
15.S.2 READ and Defaults

15.4 PRINT and OBLISTs
15.5 Initial State
15.6 BLOCK and ENDBLOCK

138
138
139
139
139
U9
140
140
140
141
142
142
142
142
142
142
143
143
143
144

15.7 SUBRs Associated with Lexical Blocking
15.7.1 READ (again)
15.7.2 PARSE and LPARSE (again)
15.7.3 LOOKUP
15.7.4 ATOM
15.7.5 REMOVE
15.7.6 INSERT
15.7.7 PNAME
15.7.8 SPNAME

15.8 Example: Another Solution to the INC Problem

146 Chapter 16. Errors. Frames, etc.
146 16.1 LISTEN
147 16.2 ERROR
147 16.3 FRAME (the TYPE)
148 16.3.1 ARGS
148 16.3.2 FUNCT
148 16.3.3 FRAME (the SUBR)
148 16.3.4 Examples
148 16.4 ERRET
150 16.5 RETRY
150 16.6 UNWIND
150 16.7 Control-G (AG)
151 16.8 Control-S (AS)
151 16.9 OVERFLOW

152 Chapter 17. Macro-operations
152 17.1 READ Macros

152 17.1.1 " and ""
153 1~1.2 LINK
153 17.1.3 Program-defined Macro-characters
153 17.1.3.1 READ (finally)
155 17.1.3.2 Examples
156 17.1.3.3 PARSE and LPARSE (finally)
156 17.2 EVAL Macros

List of Sections

,

13

156 17.2.1 DEFMAC and EXPAND
157 17.2.2 Example

159 Chapter 18. Machine Words and Bits
159 18.1 WORDs
160 18.2 BITS
160 18.3 GETBITS
161 18.4 PUTBITS
161 18.5 Bitwise Boolean Operations

162 Chapter 19. Compiled Programs
162 19.1 RSUBR (the TYPE)
162 19.2 The Reference Vector
163 19.3 RSUBR Linking
163 19.4 Pure and Impure Code

• 164 19.5 TYPE-C and TYPE-W
164 19.6 RSUBR (the SUBR)
165 19.7 RSUBR-ENTRY
165 19.8 RSUBRs in Files
166 19.9 Fixups

168 Chapter 20. Multiprocessing
168 20.1 PROCESS (the TYPE)
169 20.2 STATE of a PROCESS
169 20.3 PROCESS (the SUBR)
169 20.4 RESUME
170 20.5 Switching PROCESSes
170 20.5.1 Starting Up a New PROCESS
170 20.5.2 Top-level Return
171 20.5.3 Symmetric RESUMEing
171 20.6 Example
172 20.7 Other Multiprocessing Features
172 20.7.1 BREAK-SEQ
172 20.7.2 MAIN
173 20.7.3 ME
173 20.7.4 RESUMER
173 20.7.5 SUICIDE
173 20.7.6 ISTEP
174 20.7.7 FREE-RUN
174 20.8 Sneakiness with PROCESSes
175 20.9 Final Notes

176 Chapter 21. Interrupts
176 21.1 Definitions of Terms
177 21.2 IHEADER and HANDLER (the TYPEs)

List of Sections

14

21.2.1 IHEADERs
21.2.2 HANDLERs

21.S EVENT
21.4 HANDLER (the SUBR)
21.5 ON
21.6 OFF
21.7 DISABLE
21.8 ENABLE

177.
178
178
179
179
179
180
180
180
180
181
181
182
182
183
184
184
184
185
185
185
186
186
186
186
186
187
187
187
188

21.9 Priorities and Interrupt Levels
21.9.1 Interrupt Processing
21.9.2 INT -LEVEL
21.9.3 DISMISS

21.10 Specific Interrupts
21.10.1 II CHAR II
21.10.2 "GCII
21.10.3 "DIVERT-AGC"
21.10.4 IICLOCKII
21.10.5 IIBLOCKEDII
21.10.6 II UNBLOCKED II
21.10.7 IIREAD" and IIWRITEII

21.10.8 IISYSDOWNII
21.10.9 .. ERROR II
21.10.10 II IPC II
21.10.11 II INFERIOR II
21.10.12 "RUNP and II REAL TN
21.10.13 "Dangerous" Interrupts

21.11 User-Defined Interrupts (INTERRUpn
21.12 Waiting for Interrupts

21.12.1 HANG
21.12.2 SLEEP

189 Chapter 22. Storage Management
189 22.1 Movable Carbage-collected Storage
190 22.1.1 Stacks and Other Internal Vectors
191 22.2 Immovable Storage
191 22.2.1 Garbage-collected: FREEZE
191 22.2.2 Non-garbage-collected: STORAGE (the PRIHTYPE)
191 22.3 Other Storage
192 22.4 Garbage Collection: Details
192 22.5 GC
193 22.6 BLOAT
194 22.7 BLOAT-STAT
195 22.8 GC-MON
196 22.9 Related Subroutines
196 22.9.1 SUBSTITUTE

List of Sections

•

15

196 22.9.2 PURIFY

197 Chapter 23. MDL as an ITS Job
197 23.1 TIME
197 23.2 UNAME
197 23.3 JNAME
197 23.4 LOGOUT
198 23.5 VALRET
198 23.6 QUIT
198 23.7 DEMSIG
198 23.8 Inter-job Communication
198 23.8.1 SEND and SEND-WAIT
199 23.8.2 The UIPC· Interrupt
199 23.8.S IPC-OFF
199 23.8.~ IPC-ON ,
200 Chapter 24. Efficiency and Tastefulness
200 24.1 Efficiency
201 24.1.1 Example
203 24.2 Creating a LIST in Forward Order
208 24.8 Read-only Free Variables
208 24.4 Clobal and Local Values
204 24.5 Making Offsets for Arrays
204 24.6 Tables
204 24.7 Nesting

206 Appendix 1. A Look Inside

220 Appendix 2. Predefined Subroutines

252 Appendix S. Predefined Types

254 Appendix 4. Error Messages

259 Appendix 5. Initial Settings

260 References

261 Topic Index

265 Token Index

List of Sections

16

Chapter 1. Basio Interaotion

The purpose of this chapter is to provide you with that minimal amount of information needed to
experiment with MDL while reading this document. It is strongly recommended that you do
experiment. especially upon reaching chapter 5 (Simple Functions).

1.1. Loading MDL [1]

First, catch your rabbit. Somehow get the interpreter (the program in the fiJe SYS: TS MOL under
ITS or HDL.SAV under TENEX) running. The interpreter will flrat type out some news relating to
MDL. if any. then type

LISTENING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running is an interpreter for the language MOL. All it knows how
to do is interpret MOL expressions. There is no special ·command language"; you communicate
with the program •• make it do things for you -- by actuaUy typing legal MOL expre55iolls. which it
then interprets. Everything you can do at a console can be done in a program, and vice versa, in
exactly the same way.

The program will be referred to as just "MOL" (or "the interpreter") from here on. There is no
ambiguity, .Inee the program i. just an incarnation of the concept "MOL",

1.2. Typing [1]

Typing a character at MOL normally just causes that character to be echoed (printed on your
console) and remembered in a buffer. The only charactera for which this i. normally not true act as
follows:

Typing $ (ESC) causes MOL to echo dollar-sign and causes the contents of the buffer (the characters

1 - 1.2 Basic Interaction

,

17

which you've typed) to be interpreted as an expression(s) in MOL. When this interpretation is done.
the result wiJ) be printed and MOL will wait for more typing. ESC will be represented by the glyph
S in this document.

Typing the rubout character (DEL under ITS. control·A under TEN EX) causes the last character in
the buffer - the one most recently typed •• to be thrown away (deleted). If you now immediately
type another rubout. once again the last character is deleted - namely. the second most recently
typed. Etc. The character deleted is echoed. so you can see what you're doing. On some CRT
display consoles. rubout may "echo" by causing the deleted character to disappear. If no characters
are in the buffer. rubout echoes as carriage·return line·feed.

Typing A@ (control-atsign) deletes everything you have typed since the Ialt S. and prints a carriage
return line-feed.

Typing 0 (control-D) causes the current input buffer to be typed back out at you. This allows you
to see what you rea))y have. without the confusing re·echoed characters produced by rubout.

Typing AL (control-L) produces the same effect as typing AD. except that. if your console is a
-display· console (for example. IMLAC, ARDS. Datapoint), it first clears the screen.

Typing G (<:ontrol-C) causes MDL to stop whatever it is doing and act as if an ERROR had occurred
(section 1.4~ AG is generally most useful for temporary interruptions to check the progress of a
computation.G is "reversible" .. that is, it does not destroy any of the ·state· of the computation it
interrupts. To "undo· a G. type the characters

<ERRET T)S

(This is discussed more fully far below.)

Typing AS (control-S) causes MDL to throwaway what it is currently doing and return to a normal
"listening" state. AS is generaUy most useful for aborting infinite loops and similar terrible things.
AS destroys whatever is going on, and so it is not reversible.

Most expressions in MDL include "brackets" (generically meant) that must be correctly paired and
nested. If you end your typing with the pair of characters! S (exclamation.point ESC). all currently
unpaired brackets (but not double.quotes, which bracket strings of characters) will automatica))y be
paired and interpretation will start. Without the I. MDL will just sit there waiting for you to pair
them. If you have improperly nested parentheses, brackets, etc., within the expression you typed, an
error will occur, and MDL will te)) you what is wrong.

Once the brackets are properly paired, MDL will immediately echo carriage.return and line-feed. and
the next thing it prints will be the result of the evaluation. Thus, if a plain S is not 50 echoed. you
have some expression unclosed. In that case, if you have not typed any characters beyond the $.

1.2 Basic Interaction

18

you can usuaUy rub out the $ and other characteri back to the beginning of the unclosed expression.
Otherwise, what you have typed is beyond the help of rubout and A'I if you want to abort it. use AS.

MDL accepts and distinguishes between upper and lower case. AU "built.in functions" must be
referenced in upper case.

1.3. Loading a File [I]

If you have a program in MDL that you have written as an ASCII file on some device. you can
-load- it by typing

<FLOAO file>$

where file is the name of the file. in standard operating.system syntax. enclosed in "5 (double.
quotes). Omitted parts of the file name are taken from the default: DSK: INPUT > (ITS) or OSK:
INPUT .MUD (TEN EX) in the current disk directory.

Once you type S. MDL wiJI process the text in the file (including FLOADs) exactly as if you had
typed it on a consoJe and followed it with $. except that ·values· produced by the computations are
not printed. When MDL is finished processing the file, it will print "DONE".

1.4. Errors - Simple Considerations. [1]

When MDL decides for some reason that something is wrong, the standard sequence of evaluation is
interrupted and an error function is caUed. This produces the following console output:

IIIERRORIII
often-h yphenated-reason
function-in-which-error-occurred
LISTENING-AT-LEVEL integer PROCESS integer

You can now interact with MDL as usual, typing expressions and having them evaluated. There
exist facUities (built.in functions) allowing you to find out what went wrong. restart, or kiJJ
whatever was going on. In particular. you can recover from an error •• that is, undo everything but
side effects and return to the initial typing phase - by typing the foUowing first line. to which
MDL will respond with the second Jine:

<ERRET>$
LISTENING-AT-LEVEL 1 PROCESS 1

1.2 • 1.4 Basic Interaction

19

If you type the following first line while still in the error state (before <ERRET». MOL will print. as
shown. the arguments which gave indigestion to the unhappy function:

<ARGS <FRAME <FRAME»>$
[NgulMnts to unh.pp y function]

This will be explained by and by.

1.4 Basic Interaction

20

Chapter 2. Read, Evaluate, and Print

2.1. General [I]

Once you type $ and all brackets are correctly paired and nested. the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL (-evaluate"), which passes its output to PRINT. whose output i5 typed on the console.

[Actually, the sequence is more like READ, TERPRI, EVAL, PRIN1, TERPRI (explained in chapter 11);
MDL gives you a carriage-return line-feed when the READ is complete. that is, when all brackets are
paired.]

Functionally,

READ: printable representatiolls -> MDL objects

EVAL: MDL objects -> MDL objects

PRINT: MDL objects -> printable representations

That is. READ takes ASCII text. such as is typed in at a console, and creates the MDL objecu
represented by that text. PRINT takes MDL objects. creates ASCII text representations of them. and
types them out. EVAl, which is the realIy important one, performs transformations on MDL objects.

2.2. Philosophy (TYPEs) [1]

In a general sense. when you are interacting with MDL. you are dealing with a world inhabited only
by a particular set of objects: MDL objects.

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL object depend upon the class of MDL objects to which it belongs. This class is the
TYPE of the MDL object. Every MDL Object has a TYPE, and every TYPE has its own peculiarities.

2 - 2.2 Read, Evaluate, and Print

21

There are many different TYPEs in MOL; they will gradually be introduced below. but in the
meantime here is a representative sample: SUBR (the TYPE of READ. EVAL and PRINT), FSUBR, LIST,
VECTOR, FORM, FUNCTION, etc. Since every object has a TYPE, one often abbreviates "an object of
TYPE type" by saying "a type".

The laws of the MDL world are defined by EVAL In a very real sense, EVAL is the only MOL object
which -acu-, which "does something". In "acting", EVAL is always "following the directions" of some
MDL object. Every MDL object should be looked upon as supplying a set of directions to EVAL;
what these directions are depends heavily on the TYPE of the MDL object.

Since EVAL is so ever-present, an abbreviation is in order: "evaluates to something" or "EVALs to
something- should be taken as an abbreviation for "when given to EVAL. causes EVAL to return
something",

As abstract entities, MDL Objects are, of course, not "visible". There is, however, a standard way of
representing abstract MDL objects in the real world. The standard way of representing any given
TYPE of MDL object will be given below when the TYPE is introduced. These standard
representations are what READ understands, and what PRINT produces.

2.1. Example (TYPE FIX) [ll

IS
1

The following has occurred:

First, READ recognized the character 1 as the representation for an object of TYPE FIX, in particular
the one which corresponds to the integer one. (FIX means integer, because the decimal point is
understood always to be in a fixed position: at the right-hand end.) READ built the MDL object
corresponding to the decimal representation typed. and returned it.

Then EVAL noted that its input was of TYPE FiX. An object of TYPE FIX evaluates to itself. so EVAL
returned its input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the console the decimal character
representation of the corresponding integer.

2.2 - 2.3 Read, Evaluate, and Print

22

2.4. Example (TYPE FLOAD [1]

LOS
1.0

What went on was entirely analogous to the preceding example. except that the MDL object was of
TYPE FLOAT. (FLOAT means a real number (of limited precision). because the decimal point can float
around to any convenient position: an internal exponent part tells where it "really" belongs.)

2.5. Example (TYPE ATOM. PNAME) [1]

GEORGES
GEORGE

This time a lot more happened.

READ noted that what was typed had no special meaning. and therefore assumed that it was the
representation of an identifier. that is. an object of TYPE ATOM. ("Atom" means more or leu
indivisible.) READ therefore attempted to look up the representation in a table it keeps for such
purposes [a LIST of OBLISTs, available as the local value of the ATOM OBLIST]. If READ finds an
ATOM in its table corresponding to the representation. that ATOM is returned as READ's value. If READ
fails in the lookup. it creates a new ATOM, puts it in the table with the representation read [INSERT
into < 1 .OBLIST) usually]. and returns the new ATOM. Nothing which could in any way be
referenced as a legal "value" is attached to the new ATOM. The initially-typed representation of an
ATOM becomes its PNAME. meaning its name for PRINT. One often abbreviates "object of TYPE ATOM
with PNAME name" by saying "ATOM name".

EVAL. given an ATOM. returned just that ATOM.

PRINT. given an ATOM. typed out its PNAME.

At the end of this chapter. the question "what is a legal PNAME" will be considered. Further on. the
methods used to attach values to ATOMs will be described.

2.6. FIXes, FLOATs. and ATOMs versus READ: Specifics

2.6.1. READ and FIXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX, and the default radix

2.4 - 2.6.1 Read. Evaluate, and Print

23

of the representation is decimal. A - (hyphen) immediately preceding such a grouping represents a
negative FIX. The largest FIX representable on the PDp·lO is two to the 95th power minus one. or
34 359 738 367 (decimaJ); the smallest is one less than the negative of that number. If you attempt
to type in a FIX outside that range. READ converts it to a FLOAT; if a program you write attempts to
produce a FIX outside that range. you will get an overflow error (unless disabled~

The radix used by READ and PRINT is changeable by the user; however. there are two formats for
representations of FIXes which cause READ to use a specified radix independent of the current one.
These are as follows:

(I) If a group of digits is immediately followed by a . (period), READ interprets that group as the
decimal representation of a FIX. For example. 10. is always interpreted by READ as the decimal
representation of ten.

(2) If a group of digits is immediately enclosed on both sides by asterisks (-), READ interprets
that group as the octal representation of a FIX. For example. -10- is always interpreted by
READ as the octal representation of eight.

2.6.2. READ and PRINT versus FLOATing·point Numbers

PRINT can produce. and READ can understand. two different formats for objects of TYPE FLOAT. The
first is "decimal-point" notation. the second is "scientific· notation. Decimal radix is always used
for representations of FLOATs.

"Decimal-point" notation for a FLOAT consists of an arbitrarily long string of digits containing one
• (period) which is followed by at least one digit. READ will make a FLOAT out of any such object.
with a Jimit of precision of one part in 2 to the 27th power.

"Scientific" notation consists of:

(I) a number.
(2) immediately followed by E or e (upper or lower case letter E),
(3) immediately followed by an exponent.

where a "number" is an arbitrarily long string of digits. with or without a decimal point (see
following note); and an "exponent" is up to two digits worth of FIX. This notation represents the
"number" to the "exponent" power of ten. Note: if the "number" as above would by itself be a FIX.
and if the "exponent" is positive. and if the result is within the allowed range of FIXes. then the
result will be a FIX. For example. READ understands 10E1 as 100 (a FIX). but 10E-1 as 1.0000000 (a
FLOAT).

The largest-magnitude FLOAT which can be handled without overflow i5 1. 7014118E+38 (decimal
radix). The smalJest-magnitude FLOAT which can be handled without underflow is . 14693679E-38 .

2.6.1 - 2.6.2 Read. Evaluate. and Print

24

2.6.3. READ and PNAMEs

The question "what is a legal PNAME?" is actually not a reasonable one to ask; any non-empty string
of arbitrary characters can be the PNAME of an ATOM. However, some PNAMEs are easier to type to
READ than others. But even the question "what are easily typed PNAMEs?" is not too reasonable.
because: READ decides that a group of characters is a PNAME by default; if it can't possibly be
anything else. it's a PNAME. So. the rules governing the specification of PNAMEs are messy. and best
expressed in terms of what is not a PNAME. For simplicity, you can just consider any uninterrupted
group of upper- and lower-case letters and (customarily) hyphens to be a PNAHE; that will always
work. If you are neither a perfectionist nor a masochist. skip to the next chapter.

2.6.3.1. Non-PNAHEs

A group of characters is !!2!. a PNAME if:

(1) It represents a FLOAT or a FIX, as described above - that is, it is composed wholly of digits,
or digits and a single • (period). or digits and a . and the letter E or e (with optional minus
signs in the right places).

(2) It begins with a . (period).

(3) It contains - if typed interactively -- any of the characters which have special interactive
effects: @, 0, L, G, S, S (ESC), rubout.

(4) It contains a format character -- space, carriage-return. line-feed. form-feed. horizontal tab,
vertical tab.

(5) It contains a , (comma) or a I (number sign) or a I (single quote) or a ; (semicolon) or a %
(percent sign).

(6) It contains any variety of bracket -- (or) or [or] or < or > or { or } or ".

In addition. the character \ (backslash) has a special interpretation. as mentioned below. Also, the
pair of characters ,- (exclamation-point hyphen) has an extremely special interpretation, which you
will reach at chapter 15.

The characters mentioned in cases 4 through 6 are "separators" - that iI. they signal to READ that
whatever it was that the preceding characters represented, it's done now. They can also indicate the
start of a new object's representation (all the opening "brackets" do just that).

2.6.3.2. Examples

The foUowing examples are not in the "standard format" of "/ins typed inS result printed', because
they are not, in 50me cases, complete objects; hence, READ would continue waiting for the brackets to

2.6.3 - 2.6.3.2 Read, Evaluate, and Print

25

be clond. In other cases, they will produce errors in EVAL if other - currently irrelevant -
conditions are not met. Instead, the right-hand column will be used to state just what READ thought
the input in the left-hand column really was.

ASCS

abcS

ARSITRARILY-LONG-PNAMES

1.2345S

1.2.345S

A.or.SS

.A.or.aS

HORE THAN ONES

ab(cdS

12345A34S

2.6.3.3. \ (Backslash) in ATOMs

an A TOM of PNAME ABC

an A TOM of PNAHE abc

an ATOM of PNAME ARBITRARILY-LONG-PNAI1E

a FLOAT, PRINTed as 1. 2345000

an ATOM of PNAME 1.2.345

an ATOM of PNAME A.or.S

not an ATOM, but (as explained later) a FORM containing an
ATOM of PNAME A.or.S

three ATOM" with PNAMEs MORE, and THAN, and ONE

an ATOM of PNAME ab, followed by the start of something
else (The something else will contain an A TOM of PNAME
beginning cd.)

an ATOM of PNAME 12345A34 (If the A had been an E. the
object would have been a FLOAT.)

If you have a strange. uncontrollable compulsion to have what were referred to as "separators" above
as part of the PNAMEs of your ATOMs. you can do 50 by preceding them with the character \
{backslash}. \ will also magically turn an otherwise normal FIX or FLOAT into an ATOM if it appears
amongst the digits. In fact. backslash in front of any character changes it from something special
to "just another character" (including the character \). It is an escape character.

When PRINT confronts an ATOM which had to be backslashed in order to be an ATOM. it will dutifully
type out the required \5. They will not. however. necessarily be where you typed them; they will
instead be at those positions which will cause READ the least grief. For example. PRINT will type out
a PNAHE which consists wholly of digits by first typing a \ and then typing the digits - no matter
where you originally typed the \ (or \5).

2.6.3.2 • 2.6.3.3 Read, Evaluate. and Print

26

2.6.3.4. Examples of Awful ATOMs

The fonowing examples iUustrate the amount of insanity that can be perpetrated by using \. The
format of the examples is again non-standard, this time not because anything iI unfinished or in
error, but because commenting is needed; PRINT doesn't do it full justice.

a\ one\ and\ a\ twoS

1234\56789$

123\ S

\\$

one ATOM, whose PNAME has four spaces in it

an ATOM of PNAHE 123456789, which PRINTs as
\123456789

an ATOM of PNAME 123space, which PRINTs as \123\ •
with a space on the end

an ATOM whose PNAME is a single backslash

2.6.3.4 Read, Evaluate. and Print

27

Chapter 3. Built-in Funotions

3.1. Representation [1]

Up to this point, all the objects we have been concerned with have had no internal structure
discernible in MDL. While the characteristics of objects with internal structure differ greatly. the
way READ and PRINT handle them is uniform, to wit:

READ. when applied to the representation of a structured object. builds and returns an object of
the indicated TYPE with elements formed by applying READ to each of their representations in
turn.

PRINT, when applied to a structured object. produces a representation of the object. with its
elements represented as PRINT applied to each of them in turn.

A MDL object which is used to represent the application of a function to its arguments is an object
of TYPE FORM. Its printed representation is

< func arg 1 arg2 ••• argn >

where func is an object which designates the function to be applied. and argl through argn are
objects which designate the arguments or "actual parameters" or "inputs". A FORM is just a
structured object which is stored and can be manipulated like a LIST (its "primitive type" is LIST -
chapter 6). The application of the function to the arguments is done by EVAL The usual meaning
of "function" (uncapitalized) in this document will be anything applicable to arguments.

3.2. Evaluation [1]

EVAL applied to a FORM acts as if following these directions:

First. examine the func (first element) of the FORM. If it is an ATOM. look at its "value" (global or
Jocal. in that order - see next chapter). If it is not an ATOM. EVAL it and Jook at the result of the

3 - 3.2 Built-in Functions

28

evaluation. If what you are looking at is not something which can be applied to arguments,
generate an error. Otherwise, follow its directions in evaluating or not evaluating the arguments
(chaptl!r,; 9 and 19) and then "apply the function" - that is, EVAL the body of the object gotten from
func.

8.8. Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]

The built-in functions of MDL come in two varieties: those which have all their arguments EVAled
before operating on them (TYPE SUBR. for "subroutine", pronounced "subber; and those which have
none of their arguments EVALed (TYPE FSUBR. historicaUy from Lisp. pronounced "effsubber").
Collectively they will be called F/SUBRs, although that term is not meaningful to the interpreter.
See appendix 2 for a listing of all F/SUBRs and short descriptions. The term "Subroutine" will be
used herein to mean both F/SUBRs and compiled user programs (RSUBRs and RSUBR-ENTRYs -
chapter 19).

Unless otherwise stated, every MOL built-in Subroutine mentioned is of TYPE SUBR. Also, when it is
stated that an argument of a SUBR must be of a particular TYPE. note that this means that EVAl of
what is there must be of the particular TYPE.

Another convenient abbreviation which will be used is "the SUBR pname" in place of "the SUBR which
is initially the 'value' of the ATOM of PNAME pnsme". "The FSUBR pname" will be used with a similar
meaning.

3.4. Examples (+ and FIX: Arithmetic) [lJ

<+ 2 4 6)$
12

The SUBR + adds numbers. Most of the usual arithmetic functions are MDL SUBRs: +, -, -, I,
HIN, HAX. HOD, SIN, COS, ATAN, SQRT, LOG, EXP, ASS. (See appendix 2 for short descriptions
of these.) All except MOD. which wants FIXes. are indifferent as to whether their arguments are
FLOAT or FIX or a mixture. In the last case. they exhibit "contagious FLOATing": one argument of
TYPE FLOAT forces the result to be of TYPE FLOAT.

<FIX 1.0)$
1

The SUBR FIX explicitly returns a FIXed-point number correlponding to a FLOATing-point number.
FLOAT does the opposite.

<+ 5 <- 2 3»$

3.2 - 3.4 Built-in Functions

11
<SQRT <+ <- 3 3) <- 4 4»>$
5.0
<- 5 3 2>$
o
<- 5)$
-5
<MIN 1 2.0>$
1.0
<I 11 7 2.0>$
0.5

29

Note this last result: the division of two FIXes gives a FIX with truncation, not rounding. of the
remainder; the intermediate result remains a FIX until a FLOAT argument is encountered.

8.5. Arithmetic: Details

+. -. -. I. MIN. and MAX all take any number of arguments, doing the operation with the first
argument and the second. then with that result and the third argument. etc. If called with no
arguments. each returns the identity for its operation (0, O. 1. 1. the greatest FLOAT. and the
least FLOAT, re.spectively); if caUed with one argument. each acts as if the identity and the argument
had been supplied. They all wiJ) cause an overflow or underflow error if any result, intermediate or
final, is too large or too sma)) for the machine's capacity. (That error can be disabled. if necessary
- section 16.9).

One arithmetic function that always requires some discu55ion is the p5eudo-random-number
generator. MDL's i5 named RANDOM, and it always returns a FIX, uniformly distributed over the
whole range of FIXes. If RANDOM is never called with arguments. it always returns the exact same
sequence of numbers. for convenience in debugging. "Debugged" programs should give RANDOM two
argument.s on the first ca)). which become the seeds for a new sequence. Popular choices of new
.seeds are the numbers given by TIME (which see), possibly with biu modified (chapter 18). Example
rpick a number from one to ten"):

<+ 1 <MOD <RANDOM> 10»$
4

8.4 - 8.5 Built-in Functions

30

Chapter 4. Values of Atoms

4.1. General [1]

There are two kinds of "value" which can be attached to an ATOM. An ATOM can have either. both. or
neither. They interact in no way (except that alternately referring to one and then the other is
inefficient). These two values are referred to as the local value and the global value of an ATOM.
The terms "local" and "global" are relative to processes, not functions or programs. The SUBRs which
reference the local and global values of an ATOM, and some of the characteristics of local versus
global values. follow.

4.2. Global Values

4.2.1. SETG [1]

A global value can be assigned to an ATOM by the SUBR SETS tset globali. as in

<SETS atom any>

where atom must EVAL to an ATOM. and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of the first argument. The value returned by the SETG is its
second argument. namely the new global value of atom.

Examples:

<SETG FOO <SETG BAR 500»$
500

The above made the global values of both the ATOM FOO and the ATOM BAR equal to the FIXed-point
number 500.

<SETG BAR FOO)$

4 - 4.2.1 Values of Atoms

31

FOO

That made the global value of the ATOM BAR equal to the ATOM FOO.

4.2.2. GVAl [1]

The SUBR GVAl ("global value") is used to nference the global value of an ATOH.

<GVAL atom>

returns as a value the global value of atom. If atom does not evaluate to an ATOM. or if the ATOM to
which it evaluates has no global value, an error is generated.

GVAL applied to an ATOM anywhere. in any process, in any function, will return the same value. Any
SETG anywhere changes the global value fot everybody. Global values are context-independent.

READ understands the character , (comma) as an abbreviation for an application of GVAL to
whatever follows it. PRINT always translates an application of GVAL into the comma format. The
foUowing are absolutely equivalent:

,atom <GVAL atom>

Assuming the examples in section 4.2.1 were carried out in the order given, the following will
evaluate as indicated:

,FOOS
500
<GVAL FOO>S
500
,BARS
FOO
, ,BARS
500

4.2.1. Note on SUBRs and FSUBRs

The initial GVALs of the ATOMs used to refer to MDL "built-in" Subroutines are the SUBRs and FSUBRs
which actually get applied when those ATOMs are referenced. If you don't like the way those
supplied routines work. you are perfectly free to SETG the ATOMs to your own versions.

4.2.1 - 4.2.3 Values of Atoms

32

4.2.4. GUNASSIGN

<GUNASSIGN stom>

("global unassign") causes atom to have no assigned global value. whether or not it had one
previously. The storage used for the global value can become free for other uses.

4.3. Local Values

4.3.1. SET [1]

The SUBR SET is used to assign a local value to an ATOM. Applications of SET are of the form

(SET atom any>

SET returns EVAL of any just like SETG.

Examples:

(SET BAR (SET FOO 100»$
100

Both BAR and FOO have been given local values equal to the FIXed-point number 100.

(SET FOO BAR>S
BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any global values FOO and BAR might have had.

4.3.2. LvAL [1]

The SUBR used to extract the local value of an ATOM is named LVAL As with GVAL. READ understands
an abbreviation for an application of LVAL: the character • (period). and PRINT produces it. The
following two representations are equivalent. and when EVAL operates on the corresponding MOL
Object. it returns the current local value of atom:

(LVAL atom> • atom

4.2.4 - 4.3.2 Values of Atoms

33

The local value of an ATOM is unique within a PROCESS. SETting an ATOM in one PROCESS has 110

effect on its LVAL in another PROCESS. because each PROCESS has its own "control stack" (chapters 20
and 22).

Assume a)) of the previous examples in this chapter have been done. Then the fo))owing evaluate as
indicated:

.BARS
100
<LVAL BAR>S
100
.FOOS
BAR
•• FOOS
FOO

4.3.3. UNASSIGN

<UNASSIGN atom>

causes atom to have no assigned local value, whether or not it had one previoully.

4.4. VALUE

VALUE is a SUBR which takes an ATOM as an argument. and then:

(1) if the ATOM has an LVAl, returns the lVAL;
(2) if the ATOM has no LVAL but has a GVAl, returns the GVAL;
(3) if the ATOM has neither a GVAL nor an LVAl, error.

This order of seeking a value is the opposite of that used when an ATOM il the first element of a
FORM. The latter will be called the GIL VAL, even though that name is not used in MDL.

Example:

<UNASSIGN A>S
A
<SETG A 1>S
1
<VALUE A>S
1
<SET A Z>S

4.3.2·4.4 Values of Atoms

34

2
<VALUE A)S
2
,AS
1

4.4 Values of Atoms

35

Chapter 5. Simple Funotions

5.1. General [I]

The MDL equivalent of a "program" (uncompiled) is an object of TYPE FUNCTION. Actually. full
blown ·programs· are usually composed of sets of FUNCTIONs. with most FUNCTIONs in the set acting
as "subprograms",

A FUNCTION may be considered to be a SUBR or FSUBR which you yourself define, It is "run" by
using a FORM to apply it to arguments (for example. (function ~rgl ~rg2 ••• ». and it always
"returns" a single object. which is used as the value of the FORM that applied it. The single object
may be ignored by whatever "ran" the FUNCTION -- equivalent to "returning no value" - or it may be
a structured object containing many objects.- equivalent to "returning many values",

In this chapter a simple subset of the FUNCTIONs you can write is presented. namely FUNCTIOru
which "act like" SUBRs with a fixed number of arguments. While this class corresponds to about 90'%
of the FUNCTIONs ever written. you won't be able to do very much with them until you read further
and learn more about MOL's control and manipulatory machinery. However, all that machinery is
just a bunch of SUBRs and FSUBRs. and you already know how to "use" them; you just need to be told
what they do. Once you have FUNCTIONs under your belt, you can immediately make use of
everything presented from this point on in this document. In fact, we recommend that you do so.

5.2. Representation [1]

A FUNCTION is just another data object in MOL. of TYPE FUNCTION. It can be manipulated like any
other data object. PRINT represents a FUNCTION like this:

IFUNCTION (elements)

that is. a number sign. the ATOM FUNCTION. a left parenthesis. each of the elements of the FUNCTION,
and a right parenthesis. Since PRINT represents FUNCTIONs like this. you can type them in to READ
this way. (But there are a few TYPEs for which that implication is false.)

5 - 5.2 Simple Functions

36

The elements of a FUNCTION can be "any number of any things"; however. when you ill. a FUNCTION
(appJy it with a FORM), EVAL will complain if the FUNCTION does not look like

'FUNCTION (act:atom arguments:list body)

where act is optional (section 9.8); body is !1.l!!!12!!! MDL Object - any old MDL object; and, in
this simple case, arguments is

(any number of ATOMs)

that is, something READ and PRINTed as: Jeft parenthesis, any number - including zero - of ATOMs.
right parenthesis. (This is actually a normal MOL object of TYPE LIST. containing only ATOMs.)

Thus. these FUNCTIONs will cause errors - but only ~ used:

'FUNCTION ()
'FUNCTION «1) Z 7.3)
IFUNCTION «A BCD»
'FUNCTION «+ 1 2> A C)

-- no argument LIST or body
-- non·ATOM in argument LIST
-- no body
-- no argument LIST

These FUNCTIONs wilJ never cause errors because of format:

'FUNCTION «) 1 2 3 4 5)
'FUNCTION «A) A)
'FUNCTION «)()()()()()()(»
'FUNCTION «A BCD EE F G H HIYA) <+ .A .HIYA»
IFUNCTION «Q) <SETG C <- .Q ,C» <+ <MOD ,C 3> .Q»

and the last two actually do something which might be useful. (The first three are rather
pathological, but Jegal.)

5.3. Application of FUNCTIONs; Binding [1]

FUNCTIONs. like SUBRs and FSUBRs, are applied using FORKs. So,

<'FUNCTION «X) <- .X .X» 5>$
25

applied the indicated FUNCTION to 5 and returned 25.

What EVAL doe. when applying a FUNCTION i. the following:

5.2·5.S Simple Functions

37

(1) Create a "world" in which the ATOMs of the argument LIST have been SET to the values
applied to the FUNCTION, and all other ATOMs have their original values. This is called
"binding".

- In the above. this is a "world" in which X is SET to 5.

(2) In that new "world", evaluate all the objects in the body of the FUNCTION, one after the
other. from first to last.

- In the above, this means evaluate <It .X .X> in a "world" where X is SET to 5.

(3) Throwaway the "world" created, and restore the LVALs of all ATOMs bound in this
application of the FUNCTION to their originals (if any). This is calIed "unbinding".

- In the above, this simply gives X back the local value, if any, that it had before binding.

(4) Return as a value the last value obtained when the FUNCTION's body was evaluated in step
(2).

- In the above, this means return 25 as the value.

The "world" mentioned above is actualIy an object of TYPE ENVIRONMENT. The fact that such
"worlds" are separate from the FUNCTIONs which cause their generation means that all MDL
FUNCTIONs can be used recursively.

The only thing that is at all troublesome in this sequence is the effect of creating these Ilew
·worlds·, in particular. the fact that the previous world is completely restored. This means that if,
inside a FUNCTION. you SET one of its argument ATOMs to something, that new LVAL will not be
remembered when EVAL leaves the FUNCTION. However, if you SET an ATOM which is not in the
argument LIST (or SETG any ATOM) the new local (or global) value will be remembered. Examples:

(SET X 0)$
o
('FUNCTION «X) <SET X <It .X .X») 5>$
25
.X$
o

5.3 Simple Functions

as

On the other hand,

<SET Y 0)$
o
<#FUNCTION «X) (SET Y (- .X .X») 5)$
25
.Y$
25

By using PRINT as a SUBR. we can "see" that an argument'.s LVAL really i. changed while EVALuating
the body of a FUNCTION:

(SET X 5)$
5
(IFUNCTION «X) (PRINT .X) (+ .X 10» 3>$
3 13
.X$
5

The fir.st number after the application FORM was typed out by the PRINT; the ,second is the value of
the application.

Remembering that LVALs of ATOMs ~ in argument LISTs are not changed, we can reference them
within FUNCTIONs. as in

(SET Z 100)$
100
('FUNCTION «Y) <I .Z .Y» 5>$
20

A TOMs used like Z or Y in the above examples are referred to as "free variables-. The use of free
variables, while often quite convenient, i5 rather dangerous unless you know exactly how a
FUNCTION will always be used: if a FUNCTION containing free variables is used within a FUNCTION
within a FUNCTION within .. '0 one of those FUNCTIONs might just happen to use your free variable
in its argument LIST. binding it to some unknown value and possibly causing your use of it to be
erroneous. Please note that "dangerous". as used above, really means that it may be effectively
impossible (1) for other people to use your FUNCTIONs, and (2) for you to use your FUNCTIONs a
month (two weeks?) later.

5.3 Simple Function$

•

39

5.4. Defining FUNCTIONs (FUNCTION and DEFINE) [1]

Obviously. typing #FUNCTION (•••) all the time is neither reasonable nor adequate for many
purposes. Normally. you just want a FUNCTION to be the GVAL of some ATOM •• the way SUBRs and
FSUBRs are - so you can use it repeatedly (:md recursively). Note that you generally do not want a
FUNCTION to be the LVAL of an ATOM; this has the same problems as free variables. (Of course, there
are always cases where you are being clever and !:!!!l the ATOM to be re-bound)

One way to "name" a FUNCTION is

So that

(SETG SQUARE IFUNCTION «X) <* .X .X»>S
IFUNCTION «X) <* .X .X»

<SQUARE 5>$
25
<SQUARE 100)$
10000

Another way. which is somewhat cleaner in its typing:

<SETG SQUARE <FUNCTION (X) <* .X .X»>$
IFUNCTION «X) <- .X .X»

FUNCTION is an FSUBR which simply makes a FUNCTION out of its arguments and returns the created
FUNCTION.

This. however, is generally the best way:

<DEFINE SQUARE (X) <* .X .X»$
SQUARE
, SQUARES
IFUNCTION «X) <* .X .X»

The last two lines immediately above are just to prove that DEFINE did the "right thing".

DEFINE is an FSUBR which SETGs EVAL of its first argument to the FUNCTION it makes from the rest
of its arguments. and then returns EVAL of its first argument. DEFINE obviously requires the least
typing of the above methods, and is "best" from that standpoint. However, the real reason for using
DEFINE is the following: If EVAL of DEFINE's first argument already has a GVAL. DEFINE produces all
ERROR. This helps to keep you from accidently redefining things - like MOL SUBRs and FSUBRs.
The SETG constructions should be used only when you really do want to redefine something. DEFINE
will be used in the rest of this document.

5.4 Simple Functions

40

[Actually. if it is absolutely necessary to use DEFINE to "redefine" things. there is a "switch" which
can be used: if the LVAL of the ATOM REDEFINE is T (or anything not of TYPE FALSE), DEFINE will
produce no ERRORs. The normal state can be restored by evaluating <SET REDEFINE < > >. See
chapter 8.]

5.5. Examples (Comments) [Il

Using SQUARE as defined above:

(DEFINE HYPOT (SIDE-l SIDE-2)
,-This is a comment. This FUNCTION finds the

length of the hypotenuse of a right triangle
of sides SIDE-l and SIDE-2.N

<SQRT <+ <SQUARE .SIDE-I> <SQUARE .SIDE-2»»5
HYPOT
(HYPOT 3 4>5
5.0

Note that carriage-returns, line-feeds, tabs, etc. are just separators, Uke spaces. A comment is ~
single MDL object which follows a ; (semicolon). A comment can appear between any two MDL
Objects. A comment is totally ignored by EVAL but remembered and associated by READ with the
place in the FUNCTION (or any other structured object) where it appeared. (This will become clearer
after chapter 13.) The ., (double.quotes) serve to make everything between them a single MDL
object. whose TYPE 15 STRING (chapter 7). (SQRT is the SUBR which return. the square root of its
argument. It always returns a FLOAT.)

A whimsical FUNCTION:

(DEFINE ONE (THETA) ;"This FUNCTION always returns 1..
<+ <SQUARE <SIN .THETA»

ONE
<ONE 5>$
0.99999994
<ONE 0.23>5
0.99999999

<SQUARE <COS .THETA»»$

ONE always returns (approximately) one, since the sum of the squares of sin(x) and cos(x) is unity
for any x. (SIN and COS always return FLOATs, and each takes its argument in radians. ATAN
(arctangent) returns its value in radians. Any other trigonometric function can be compounded
from these three.)

5.4 - 5.5 Simple Functions

41

MDL doesn't have a general "to the power" SUBR, so let'. define one using LOG and EXP (log base e.
and e to a power. respectively; again. they return FLOATs).

<DEFINE •• (NUM PWR) <EXP <- .PWR <LOG .NUM»»S
It.

< It It Z 2>$
4.0000001
<It It 5 3>$
125.00000
<It. 25 0.5>$
5.0000001

Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):

<DEFINE START () <SETG GV 0»$
START
<DEFINE STEP () <SETG GV <+ ,GV 1»>$
STEP
<START)$
o
<STEP)$
1
<STEP>$
2
<STEP)$
3

START and STEP take no arguments. so their argument LISTs are empty.

An interesting. but pathological, FUNCTION:

<DEFINE INC (ATM) <SET .ATM <+ •• ATM 1»>$
INC
<SET A 0>$
o
(INC A)S
1
<INC A>$
2
.AS
2

INC takes an 8!Q.t1 as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
INC. the ATOM ATM is SET to the ATOM which i. its argumentl thus •• A TM returns the lVAL of the
argument. However. there is a problem:

5.5 Simple Functions

42

(SET ATH 0>$
o
(INC ATH)S

-ERROR
ARG-WRONG-TYPE
+
LISTENING-AT-LEVEL 2 PROCESS 1
(ARGS (FRAME (FRAHE»)$
[ATH 1]

The error occurred because .ATH was ATM. the argument to INC, and thus •• ATH was ATM also. We
really want the outermost • in •• ATM to be done in the ·world" (ENVIRONHENn which existed just
before INC was entered - and this definition of INC does both applications of LVAL in its own
·world-, Techniques for doing INC "correctly" will be covered below. Read on.

5.5 Simple Functions

43

Chapter 8. Data Types

6.1. General [ll

A MDL object consists of two parts: its TYPE and its "data part" (appendix I). The interpretation of
the "data part" of an object depends of course on its TYPE. The structural organization of an object.
that is. the way it is organized in storage, is referred to as its "primitive type". While there are
many different TYPEs of objects in MOL, there are fewer primitive types.

AJJ structured objects in MDL are ordered sequences of elements. As such. there are SUBRs which
operate on all of them uniformly, as ordered sequences. On the other hand. the reason for having
different primitive types of structured objects is that there are useful qualities of structured objects
which are mutually incompatible. There are, therefore, SUBRs which do not work on all structured
objects; these SUBRs exist to take full advantage of those mutually incompatible qualities. The
most-commonly-used primitive types of structured objects are discussed in chapter 7. along with
those special SUBRs operating on them.

It is very easy to make a new MOL object that differs from an old one only in TYPE, as long as the
primitive type is unchanged. It is relatively difficult to make a new structured object that differs
from an old one in primitive type, even if it has the same elements.

Before talking any more about structured objects, some information needs to be given about TYPEs
in general.

6.2. Printed Representation [1]

There are many TYPEs for which MDL has no specific representation. There aren't enough different
kinds of brackets. The representation used for TYPEs without any special representation is

#type representation-as-if-it-were-its-primitive-type

READ will understand that format for any TYPE, and PRINT will use it as a default. This

6 - 6.2 Data Types

44

representational format will be referred to below as "I notation". It was used above to represent
FUNCTIONs.

6.S. SUBRs Related to TYPEs

6.S.1. TYPE [1]

<TYPE any)

returns an ~ whose PNAME corresponds to the TYPE of any. There is no TYPE '"TYPE". To type a
TYPE (aren't homonyms wonderful?). jU5t type the appropriate ATOM. like FIX or FLOAT or ATOM etc.
However. in this document we will use the convention that a metasyntactic variable can have type
for a -data type"; for example. foo:type means that the TYPE of foo is ATOM. but the ATOM must be
something that the SUBR TYPE can return.

Examples:

<TYPE 1>$
FIX
<TYPE 1.0)$
FLOAT
<TYPE +)$
ATOH
<TYPE .+)$
SUBR
<TYPE GEORGE)$
ATOM

6.3.2. PRIMTYPE [1]

< PRIHTYPE any)

evaluates to the primitive type of any. The PRIMTYPE of any is an ATOH which also represents a
TYPE. The wayan object can be manipulated depends solely upon its PRIHTYPE; the way it is
evaluated depends upon its TYPE.

Examples:

<PRIHTYPE 1>$
WORD
<PRIMTYPE 1.0)$

6.2 • 6.3.2 Data Types

WORD
<PRIMTYPE ,+)S
WORD
<PRIMTYPE GEORGE)$
ATOM

6.S.S. TYPEPRIM (1]

<TYPEPRIM type)

45

returns the PRIHTYPE of an object whose TYPE is type. type is. as usual. an ATOM used to designate a
TYPE.

Examples:

<TYPEPRIM FIX)S
WORD
<TYPEPRIM FLOAT)S
WORD
<TYPEPRIM SUBR)$
WORD
<TYPEPRIM ATOM)$
ATOM
<TYPEPRIM FORM)$
LIST

6.3.4. CHTYPE (1]

<CHTYPE any type)

("change type") returns a new object that has TYPE type and the same "data part" as any (appendix
1).

<CHTYPE (+ 2 2) FORM)$
<+ Z Z>

An error is generated if the PRIMTYPE of any is not the same as the TYPEPRIM of type. An error will
also be generated if the attempted CHTYPE is dangerous and/or senseless, for example. CHTYPEing a
FIX to a SUBR. Unfortullately. there are few useful examples we can do at this point.

[CHTYPEing a FIX to a FLOAT or vice versa produces. in general. nonsense. since the bit formats for
FIXes and FLOATs are different. The SUBRs FIX and FLOAT convert between those formats. Useful

6.3.2 • 6.3.4 Data Types

46

obscurity: because of their internal representations on the PDP-10, <CHTYPE <MAX) FIX> gives the
least possible FIX, and analogously for MIN.]

Passing note: ., notation" is just an instruction to READ saying "READ the representation of the
PRIMTYPE normally and (literally) CHTYPE it to the specified TYPE". [Or, if the PRIHTYPE is
TEMPLATE. -apply the GVAL of the TYPE name (which should be a TEMPLATE constructor) to the given
elements of the PRIHTYPE TEMPLATE as arguments"]

6.4. More SUBRs Related to TYPEs

6.4.1. ALL TYPES

<ALLTYPES>

returns a VECTOR (chapter 7) containing just those ATOMs which can currently be returned by TYPE
or PRIHTYPE. This is the very -TYPE vectorN (section 22.1) that the interpreter uses: look, but don't
touch. No examples; try it, or see appendix 3.

6.4.2. VALID-TYPE?

<VALID-TYPE? stom>

returns IFALSE () if stom is not the name of a TYPE, and the same object that <TYPE-C atom>
(section 19.5) returns if it is.

6.4.3. NEWTYPE

<NEWTYPE ,tom type>

returns atom, after causing it to become the representation of a brand-new TYPE whose PRIMTYPE is
<TYPEPRIM type). What NEWTYPE actually does is make ,tom a legal argument to CHTYPE and
TYPE PRIM. (Note that names of new TYPEs can be blocked lexically to prevent collision with other
names, just like any other ATOMs -- chapter 15.) Objects of a NEWTYPE-created TYPE can be generated
by creating an object of the appropriate PRIMTYPE and using CHTYPE. They will be PRINTed
(initially), and can be directly typed in, by the use of ., notation" as described above. EVAL of any
object whose TYPE was created by NEWTYPE is initially the object itself, and, initially. you cannot
APPL Y something of a generated TYPE to arguments. But see below.

Examples:

6.3.4 - 6.4.3 Data Types

<NEWTYPE GARGLE FIX>$
GARGLE
<TYPEPRIM GARGLE>S
WORD
<SET A <CHTYPE 1 GARGLE»$
IGARGLE ·000000000001-
<SET B #GARGLE 100>$
#GARGLE ·000000000144-
<TYPE .B>$
GARGLE
<PRIMTYPE .B>$
WORD

6.4.4. PRINTTYPE, EVALTYPE and APPLYTYPE

<PRINTTYPE type how>

<EVALTYPE type how>

<APPLYTYPE type how>

all return type, after specifying how MDL is to deal with it.

47

These three SUBRs can be used to make newly-generated TYPEs behave in arbitrary ways, or to
change the characteristics of standard MDL TYPEs. PRINTTYPE tells MDL how to print type,
EVAL TYPE how to evaluate it, and APPL YTYPE how to apply it in a FORM.

how can be either a TYPE or something that can be applied to arguments.

If how is a TYPE, MDL will treat type just like the TYPE given as how. how must have the same
TYPEPRIH as type.

If how is applicable, it will be used in the following way:

For PRINTTYPE. how should take one argument: the object being output. how should output
something without formatting (PRINI-style)j its result is ignored. (Note: how cannot use an output
SUBR on how's own type: endless recursion will result. OUTCHAN is bound during the application to
the CHANNEL in use, or to a pseudo-internal channel for FLATSIZE - chapter 11.) If how is the SUBR
PRINT. type will receive no special treatment in printing, that is, it will be printed as it was in an
initial MDL or immediately after its defining NEWTYPE.

For EVAL TYPE, how should take one argument: the Object being evaluated. The value returned by
how will be used as EVAL of the object. If how is the SUBR EVAL. typtl will receive no special
treatment in evaluation.

6.4.3 - 6.4.4 Data Types

48

For APPLYTYPE. how should take at least one argument. The first argument will be the object being
applied; the relt will be the objects it was given al argument •. The result returned by how will be
used as the result of the application. If how is the SUBR APPLY. type will receive no special
treatment in application to arguments.

If any of these SUBRs is given only one argument. that i5 if how i5 omitted. it returns the currently
active how (a TYPE or an appJicable object). or else 'FALSE () if ty". i. receiving no 5pecial
treatment in that operation.

Unfortunately. these examples are fully understandable only after you have read through chapter H.

(DEFINE ROMAN-PRINT (NUMB)
(CONO «OR <L-? .NUMB 0> <G? .NUMB 3999»

<PRINC <CHTYPE .NUMB TIME»)
(T
(RePRINT <I .NUMB 1000)
<RePRINT <I .NUMB 100>
<RePRINT <I .NUMB 10)
(RePRINT .NUMB

ROMAN-PRINT

<DEFINE RePRINT (MOON V)
(SET MOON (MOD .MOON 10»
(COND «--1 0 .MOON»

«==1 1 .MOON> <PRINC <1
«==? 2 .MOON> <PRINe <1
«==1 3 .MOON> <PRINe <1
«==1 4 .MOON> <PRINe <1
«==1 5 .MOON> <PRINe <2
«1 .. 1 6 .MOON> <PRINe <2
« •• ? 7 .MOON> <PRINe (2
«==? 8 .MOON>
<PRINe <2 .V»
(PRINC <1 .v»
(PRINe (1 .v»
<PRINC (1 .V»)

«--1 9 .MOON> <PRINe <1
RePRINT

I! [! \M]>
I![!\C !\D !\M]>
I![I\X I\L I\e]>
11[1\1 I\V I\X]»»S

.V»)
· V» <PRINe (1 .V»)
.V» <PRINC <1 .V» (PRINC (I
· V» <PRINC <2 .V»)
.V»)
· V» <PRINC < 1 .V»)
· v» (PRINC (1 • v» (PRINC < 1

.V» (PRINe <3 .V»»>S

(PRINTTYPE TIME FIX> ;"fairly harmless but necessary here"S
TIME
(PRINTTYPE FIX ,ROMAN-PRINT> ;"hee heel"S
FIX·
(+ 2 Z>S
IV

6.4.4

.V»)

.V»)

Data Types

1984$
MCMLXXXIV
<PRINTTYPE FIX .PRINT>$
FIX

<NEWTYPE GRITCH LIST) ,"I new TYPE of PRIMTYPE LISTIIS
GRITCH
<EVALTYPE GRITCH>$
IFALSE ()
<EVALTYPE GRITCH LIST> :"evaluated like a LISTII$
GRITCH
<EVALTYPE GRITCH)$
LIST
'GRITCH (A (+ 1 2 3) !(SET A "ABC"» ;"Type in one.IIS
'GRITCH (A 6 !\A !\B I\C)

<NEWTYPE HARRY VECTOR> :"a new TYPE of PRIMTYPE VECTORII$
HARRY
<EVALTYPE HARRY 'FUNCTION «X) <1 .X»>

,·When a HARRY is EVALed. return its first element.IIS
HARRY
'HARRY [1 Z 3 4]$
1

<NEWTYPE WINNER LIST> : Iia TYPE with funny applicationllS
WINNER
<APPLYTYPE WINNER>S
IFALSE ()
<APPLYTYPE WINNER <FUNCTION (W "TUPLE" T) (I.W I.T»>S
WINNER
<APPLYTYPE WINNER)$
IFUNCTION «W "TUPLE" T) (!.W !. T»
<'WINNER (A B C) <+ 1 2> q>$
(A B C 3 q)

49

The following sequence makes MDL look just like Lisp. (This example is understandable only if
you know Lisp; it is included only because it is so beautifuJ.)

So now:

<EVALTYPE LIST FORM>$
LIST
<EVALTYPE ATOM ,LVAL)S
ATOM

6.4.4 Data Types

50

(+ 1 Z)$

3
(SET 'A 5)$
5
AS
5

To complete the job. of course, we would have to do some SETG'" car Is 1. cdr ia ,REST. and lambda
II , FUNCTION. "If you really do this example. you should "undo" It before continuing:

<EVALTYPE IATOH .EVAL)$
ATOM
<EVALTYPE LIST .EVAL)$
LIST

6.4.4 Data Types

51

Chapter 7. Struotured Objeots

This chapter discusses structured objects in general and the five basic structured PRIHTYPEs. [We
defer detailed discussion of the structured PRIHTYPEs TUPLE (section 9.2) and STORAGE (section
22.2.2).]

7.1. Manipulation

The following SUBRs operate uniformly on all structured objects and generate an error if not
applied to a structured object. Hereafter, structured represents a structured object.

7.1.1. LENGTH [1]

(LENG TH structured)

evaluates to the number of elements in structured.

7.1.2. NTH [1]

(NTH structured fix)

evaluates to the fixth element of structured. Error if fix is 0 or less. or greater than (LENGTH
structured). fix is optional. default 1.

EVAL understands the application of an object of TYPE FIX as a "shorthand" call to NTH [unless the
APPL YTYPE of FIX is changed]. That is. EVAL considers the following two to be identical:

(NTH structured fix) <fix structured>

[However. the compiler (ref 7) is happier with the former (section 9.10). The two constructs are not
identical even to EVAL. if the order of evaluation is significant; for example. these two:

(NTH .X <LENGTH <SET X .Y»> «LENGTH <SET X .Y» .X>

7 • 7.1.2 Structured Objects

52

are !l2l identical.]

7.1.3. REST [1]

<REST structured fix>

evaluates to structured without its first fix elements. fix is optional, with 1 assumed.

Obscure but important side effect: REST actually returns structured "CHTYPEd" (but not through
application of CHTYPE) to its PRIMTYPE. For example, REST of a FORM is a LIST. REST with an
explicit second argument of 0 has no effect except for this TYPE change.

7.1.4. PUT [1]

< PUT structured fix anything-legal>

first makes anything-legal the firth element of structurlKi, then evaluates to structured. anything-legal
is anything which can legally be an element of structured; often, this is synonymous with "any MDL
object", but see below. Error if fix is 0 or less, or greater than <LENGTH structured>. (PUT is actually
more general than this - chapter 13.)

7.1.5. GET

<GET structured fix>

evaluates the same a$ <NTH structured fix>. It is more general than NTH, however (chapter 13), and is
included here only for symmetry with PUT.

7.1.6. SUBSTRUC

SUBSTRUC ("substructure") facilitates the construction of structures that are composed of sub-parts of
existing structures. A special case of this would be a "substring" function.

<SUBSTRUC obj:structured rest:fix amount:fix where-to:structured>

copies the first amount elements of <REST obj rest> into another object and returns the latter. All
arguments are optional except obj. which must be of PRIHTYPE LIST. VECTOR. TUPLE (treated like
a VECTOR). STRING. BYTES, or UVECTOR. rest defaults to 0, and amount defaults to all the elements.
Where-to, if given, receives the copied elements, starting at its beginning; it must be an object whose
TYPE is the PRIMTYPE of obj (a VECTOR if obj is a TUPLE). If where-to is not given, a new object is

7.1.2 • 7.1.6 Structured Objects

53

returned, of TYPE <PRIMTYPE obj> (a VECTOR if obj is a TUPLE). which!!!!£!. shares with obi. The
copying is done in one feU swoop, not an element at a time. Note: due to an implementation
restriction. if obj is of PRIMTYPE LIST, it must not share any elements with where-fo.

7.2. Representation of Basic Structures

7.2.1. LIST [1]

(element-l elemenf-2 ••• element-N')

represents a LIST of N elements.

7.2.2. VECTOR [1]

[.I.ment-l elemenf-2 ••• element-N J

represents a VECTOR of N elements. [A TUPLE is just like a VECTOR, but it Jives on the control stack.]

7.2.8. UVECTOR [1]

I (tHement-l element-2 ••• element-N!]

represenu a UVECTOR (uniform vector) of N elements. The second ! (exclamation-point) is optional
for input. [A STORAGE is an archaic kind of UVECTOR that iJ not garbage-coUected.]

7.2.4. STRING [1]

II characters II

represents a STRING of ASCII text. A STRING containing the character .. (double-quote) is
represented by placing a \ (backs lash) before the double-quote inside the STRING. A \ in a STRING is
represented by two consecutive backslashes.

7.2.5. BYTES

In {element-l element-2 ••• element-N}

represents a string of N uniformly-sized bytes of size n bits.

7.1.6 - 7.2.5 Structured Objects

54

7.2.6. TEMPLATE

{ element-l element-2 ••• element-N }

represents a TEMPLATE of N elements when output. not input - when input, a I and a TYPE must
precede it.

7.S. Evaluation of Basic Structures [1]

This section and the next two describe how EVAL treats the basic structured TYPEs [in the absence of
any modifying EVAL TYPE calls (section 6.4.4)].

EVAL of a STRING [or BYTES or TEMPLATE] is just the original object.

EVAL acts exactly the same with LISTs. VECTORs, and UVECTORs: it generates a ~ object with
elements equal to EVAL of the elements it is given. This is one of the simplest means of
constructing a structure. However. see section 7.7 below.

7.4. Examples [1]

(1 2 <+ 3 4»$
(127)
<SET FOO [5 <- 3> <TYPE "ABC">]>$
[5 -3 STRING]
<2 .FOO>S
-3
<TYPE <3 .FOO»S
ATOM
(SET BAR l[("meow") (.FOO)]>S
![("meow") ([5 -3 STRING])!]
(LENGTH .BAR>$
2
<REST <1 <2 .BAR»>S
[-3 STRING]
[<SUBSTRUC <1 <2 .BAR» 0 2>]S
[[5 -3]]
<PUT .FOO 1 SNEAKY> ;"Watch out for .BAR I"S
[SNEAKY -3 STRING]
.BARS
![("meow") ([SNEAKY -3 STRING])!]
(SET FOO <REST (I <1 .BAR» 2»$

7.2.6 - 7.4 Structured Objects

55

.BAR$
![("meow") ([SNEAKY -3 STRING]}I]

7.5. Generation of Basic Structures

Since LISTs, VECTORs. UVECTORs, and STRINGs [and BYTESes] are all generated in a fairly uniform
manner, methods of generating them wiIJ be covered together here. [TEMPLATEs cannot be generated
by the interpreter itself; see ref 1.]

7.5.1. Direct Representation [1]

Since EVAL of a LIST, VECTOR, or UVECTOR is a new LIST, VECTOR, or UVECTOR with elements which
are EVAL of the original elements, simply evaluating a representation of the object you want wilJ
generate it. (Care must be taken when representing a UVECTOR that all elements have the same
TYPE.) This method of generation was exclusively used in the examples of section 7.4. Note that
new STRINGs [and BYTESes] will not be generated in this manner, since the contents of a STRING are
not interpreted or copied by EVAL The same is true of any other TYPE whose TYPE PRIM happens to
be LIST, VECTOR, or UVECTOR [again, assuming it neither has been EVAL TYPEd nor has a built-in
EVAL TYPE, as do FORM and SEGMENT].

7.5.2. QUOTE [1]

QUOTE is an FSUBR of one argument which returns its argument unevaluated. READ and PRINT
understand the character ' (single-quote) as an abbreviation for a call to QUOTE, the way period and
comma work for LVAL and GVAL Examples:

<+ 1 2>$
3
1<+ 1 2>$
<+ 1 2>

Any LIST, VECTOR. or UVECTOR in a program that is constant and need not have its elements
evaluated should be represented directly and inside a call to QUOTE. This technique prevents the
structure from being copied each time that portion of the program is executed. Examples hereafter
will adhere to this dictum. (Note: one should !!!ill modify a QUOTEd object. The compiler will one
day put it in read-only (pure) storage.)

7.4 - 7.5.2 Structured Objects

56

7.5.3. LIST. VECTOR, UVECTOR, and STRING (the SUBRs) [1]

Each of the SUBRs LIST. VECTOR, UVECTOR. and STRING takes any number of arguments and returns
an object of the appropriate TYPE whose elements are EVAL of its arguments. There are Jimitations
on what the arguments to UVECTOR and STRING may EVAL to. due to the nature of the objects
generated. See sections 7.6.5 and 7.6.6 below.

LIST. VECTOR, and UVECTOR are generally used only in special cases, since Direct Representation
produces exactly the same effect (in the absence of errors). and the intention is more transparent.
STRING. on the other hand. produces effects very different from Hteral STRINGs.

Examples:

<LIST 1 <+ 2 3) ABC)$
(1 5 ABC)
(1 <+ 2 3) ABC)$
(1 5 ABC)
<STRING "A" <2 "QWERT") <REST "ABC") "hallo")S
"AWBChallo ll

"A <+ 2 3) (5)"$
uA <+ 2 3) (5)"

7.5.4. ILIST, IVECTOR, IUVECTOR, and ISTRING [1]

Each of the SUBRs ILlST, IVECTOR, IUVECTOR, and ISTRING ("implicit" or "iterated" whatever) creates
and returns an Object of the obvious TYPE. The format of an application of any of them is

< /thing number-ol-elements:fix expression:any)

where /thing is one of ILIST, IVECTOR, IUVECTOR, or ISTRING. An object of LENGTH number-of
elements is generated. whose elements are EVAL of expression.

expression is optional. When it is not specified. ILlST, IVECTOR, and IUVECTOR return objects fiJIed
with Objects of TYPE LOSE (PRIMTYPE WORD) as place holders. a TYPE which 'can be passed around
and have its TYPE checked, but otherwise is an ilJegal argument. If expression is not specified in
ISTRING. you get a STRING made up of @ characters.

When expression is supplied as an argument, it is re·EVALuated each time a new element is
generated. (ActuaJly. EVAL of expression is re-EVALuated, since aU of these are SUBRs.) See the last
example for how this argument may be used.

[By the way. in a construct Jike <IUVECTOR 9 I .X>, even if the LVAL of X evaluates to itself. so that
the I could be omitted without changing the result. the compiler is much happier with the I in
place.]

7.5.3 - 7.5.4 Structured Objects

57

IUVECTOR and ISTRING again have limitations on what sKpression may EVAL tOj again, see sections
7.6.5 and 7.6.6 below.

Examples:

<ILIST 5 6)$
(6 6 6 6 6)
<IVECTOR 2)$
[ILOSE ·000000000000* ILOSE *000000000000*]

<SET A 0)$
o
<IUVECTOR 9 '<SET A <+ .A 1»)$
![1 2 3 4 5 6 7 8 9!]

7.5.5. FORM and IFORM

Sometimes the need arises to create a FORM without EVAUng it or making it the body of a FUNCTION.
In such cases the SUBRs FORM and lFORM ("implicit form") can be used (or QUOTE can be used). They
are entirely analogous to LIST and lLIST. Example:

(DEFINE INC-FORM (A)
(FORM SET .A (FORM + 1 <FORM LVAL .A»»S

INC-FORM
<INC-FORM FOO)$
<SET FOO <+ 1 .FOO»

7.6. Unique Properties of Primitive TYPEs

7.6.1. LIST (the PRIMTYPE) [1]

An object of PRIMTYPE LIST may be considered as a "pointer chain" (appendix 1). Any MOL object
may be an element of a PRIMTYPE LIST. It is easy to add and remove elements of a PRIMTYPE LIST.
but the higher N is, the longer it takes to access the Nth element. The SUS"Rs which work only on
objects of PRIMTYPE LIST are these:

7.6.1.1. PUTREST [1]

<PUTREST head:primtyps-list tail:primtyps-list)

7.5.4 • 7.6.1.1 Structured Ob jecU

58

changes head so that <REST head> is tail (actually <CHTYPE t,iI LIST>). then evaluates to head. Note
that this actuaIJy changes held; it also changes anything having head as an element or a value. For
example:

<SET BOW [<SET ARF (B W»]>S
(B W)]
<PUTREST .ARF 1(3 4»$
(B 3 4)
.BOW$
[(B 3 4)]

7.6.1.2. CONS

<CONS new list>

rconstructj adds new to the front of list. without copying list. and returns the resulting LIST.
References to list are not affected.

[Evaluating (CONS • E • LIST) is equivalent to evaluating (. E I. LIST) (section 7.7) but is len
preferable to the compiler (ref 7).]

7.6.2. "Array· PRIHTYPEs [1]

VECTORs. UVECTOR.s, and STRINGs [and BYTESes and TEI1PLATEs] may be considered as "arrays"
(appendix 1). It is easy to access the Nth element irrespective of how large N is. and it is relatively
difficult to add and delete elements. The following SUBRs can be used only with an object of
PRIMTYPE VECTOR. UVECTOR, or STRING [or BYTES or TEMPLATE]. (In thi. 5ection ,rray represents an
object of such a PRIHTYPE.)

7.6.2.1. BACK [1]

<BACK array fix)

This is the opposite of REST. It evaluates to "ray. with fix elements put back onto its front end.
and changed to its PRIMTYPE. fix is optional. with default 1. If fix is greater than the number of
elements which have been RESTed off. error. Example:

<SET ZOP <REST 11[1 2 3 4] 3»S
1[41]
<BACK .ZOP 2>$
![234!]
<SET S <REST NRight is might." 15»$
....

<BACK .S 6>$

7.6.1.1 . 7.6.2.1 Structured Objects

59

"mi ght."

7.6.2.2. TOP [1]

<TOP array)

"BACKs up all the way" •• that is, evaluates to array, with all the elements which have been RESTed
off put back onto it, and changed to its PRIHTYPE. Example:

(TOP .ZOP)S
!(1 2341]

7.6.3. "Vector" PRIHTYPEs

7.6.3.1. GROW

<GROW vu back:fix fronf:fix)

adds/removes elements to/from either or both ends of VU, and returns the entire (TOPped) resultant
object. vu can be of PRIHTYPE VECTOR or UVECTOR. bacK specifies a lower bound for the number of
elements to be added to the end of vu; front specifies the same for the beginning. A negative fix
specifies removal of elements.

The number of elements added to each respective end is back or front increased to an integral
multiple of X, where X is 32 for PRIMTYPE VECTOR and 64 for PRIHTYPE UVECTOR (1 produces 32 or
64; -1 produces 0). The elements added will be LOSEs if vu is of PRIHTYPE VECTOR, and "empty"
whatever.they.are's if vu is of PRIMTYPE UVECTOR. An "empty" object of PRIHTYPE WORD contains
zero. An "empty" object of any other PRIMTYPE has zero in its "value word" (appendix 1) and is not
safe to play with; it should be replaced via PUT.

Note that, if elements are added to the beginning of vu, previousJy-existing references to vu will
have to use TOP or BACK to get at the added elements.

Caution: GROW is a very expensive operation; it requires a garbage collection (section 22.4) every
time it is used. It should be reserved for very special circumstances, such as where the pattern of
shared subobjects is terribly important.

Example:

<SET A I! [1])$
! [11]
<GROW .A 0 1>$

![O 0
o 0 0 0 0 0 0 000 0 0 000 0 0 0 000 0

7.6.2.1 . 7.6.S.1 Structured Objects

60

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 11]
.AS
! [11]

7.6.S.!. SORT

This SUBR will sort PRIHTYPEs VECTOR, UVECTOR and TUPLE (section 9.2). It works most efficiently
if the sort keys are of PRIMTYPE WORD, ATOM or STRING. However, the key. may be of any TYPE.
and SORT will still work. SORT acts on fixed-length records which consist of one or more contiguous
elements in the structure being sorted. One element in the record is declared to be the sort key.
Also. any number of additional structures can be rearranged based on how the main structure is
sorted.

<SORT pred sl 11 off s2 12 53 13 ••. sn In>

where:

pred is either (see chapter 8 for information about predicates):

(1) TYPE FALSE, in which case the TYPEs of all the sort keys must be the same; they must be of
PRIHTYPE WORD. STRING or ATOM; and a radix-exchange sort is used; or

(2) something applicable to two sort keys which returns TYPE FALSE if the first is not bigger
than the second, in which case a shell sort is used. For example • G? sorts numbers in ascending
order •• L? in descending order. Note: if your pr6d is buggy, the SORT may never terminate.

sl ••• sn are the (PRIMTYPE) VECTORs. UVECTORs or TUPLEs being sorted, and 51 contains the sort
keys;

11 ••. In are the corresponding lengths of sort records (optional, default 1); and

off is the offset from start of record to sort key (optional, default 0).

SORT returns the sorted 51 as a value.

Note: the SUBR SORT calls the RSUBR (chapter 19) SORTX; if the RSUBR must be loaded, you may see
some output from the loader on your console.

Examples:

<SORT <> <SET A (IUVECTOR 500 '(RANDOH»»$
! [... !]

sorts a UVECTOR of random integers.

7.6.S.1 - 7.6.3.2 Structured Objects

<SET V [1 MONEY Z SHOW 3 READY 4 GO]>S
[...]
<SORT <> .V Z 1>$
[4 GO 1 MONEY 3 READY Z SHOW]

<SORT .L? .V Z>S
[4 GO 3 READY Z SHOW 1 MONEY]
.VS
[4 GO 3 READY Z SHOW 1 MONEY]

<SORT <> ![Z 1 4 3 6 5 8 7] 1 0 .V>$
1[1 234 5 6 7 81]
.VS
[GO 4 READY 3 SHOW 2 MONEY 1]

61

The first sort was based on the ATOMs' PNAMEs, considering records to be two elements. The second
one sorted based on the FIXes. The third interchanged pairs of elements of each of its structured
arguments.

7.6.4. VECTOR (the PRIM TYPE) [1]

Any MDL object may be an element of a PRIMTYPE VECTOR. A PRIHTYPE VECTOR takes two words
of storage more than an equivalent PRIMTYPE LIST, but takel it all in a contiguoul chunk, whereu
a PRIHTYPE LIST may be physically spread out in storage (appendix 1). There are no SUBR.5 or
FSUBRs which operate only on PRIMTYPE VECTOR.

7.6.5. UVECTOR (the PRIHTYPE) [1]

The difference between PRIMTYPE5 UVECTOR and VECTOR i5 that every element of a PRII1TYPE
UVECTOR must be of the same TYPE. A PRIMTYPE UVECTOR takes approximately half the storage of a
PRIMTYPE VECTOR or PRIMTYPE LIST and, like a PRIMTYPE VECTOR, takes it in a contiguous chunk
(appendix 1).

[Note: due to an implementation restriction. PRIMTYPE STRINGs, BYTESes, LOCOs (chapter 12). and
objects on the control stack (chapter 22) may not be elements of PRII1TYPE UVECTORs.]

The "same TYPE" restriction causes an equivalent restriction to apply to EVAL of the arguments to
either of the SUBRs UVECTOR or IUVECTOR. Note that attempting to say

![1 .A!]

wiIl cause READ to produce an error, since you're attempting to put a FORM and a FIX into the same
UVECTOR. On the other hand.

7.6.3.2 - 7.6.5 Structured Objects

62

<UVECTOR 1 .A>

is legal. and will EVAL to the appropriate UVECTOR without error if .A EVAls to a TYPE FIX.

The following SUBRs work on PRIMTYPE UVECTORs alone.

7.6.5.1. UTYPE [1]

<UTYPE primtype-uvector>

(·uniform type") evaluates to the TYPE of every element in ita argument. Example:

<UTYPE II[A B C]>S
ATOM

7.6.5.2. CHUTYPE [1]

<CHUTYPE uv:primtype-uvector type>

rchange uniform type") changes the UTYPE of uv to type, simultaneously changing the TYPE of all
elements of uv. and returns the new. changed. uv. This works only when the PRIMTYPE of the
elements of uv can remain the same through the whole process. (Exception: a uv of UTYPE LOSE can
be CHUTYPEd to any type (legal in a UVECTOR of course); the resulting elements are "empty". as for
GROW.)

CHUTYPE actually changes uv; hence all references to that object will reflect the change. This is
quite different from CHTYPE.

Examples:

<SET LOST <IUVECTOR 2»$
![ILOSE -000000000000- #LOSE -000000000000-1]
<UTYPE • LOST)S
LOSE
<CHUTYPE .LOST FORM>$
![<><>I]
• LOST
1[<><>1]
<CHUTYPE .LOST LIST>$
![() ()!]

7.6.5 • 7.6.5.2 Structured Objects

63

7.6.6. STRING (the PRIMTYPE) and CHARACTER [1]

The best mental image of a PRIMTYPE STRING is a PRIMTYPE UVECTOR of CHARACTERs -- where
CHARACTER is the MDL TYPE for a single ASCII character. The representation of a CHARACTER, by
the way. is

! \any-ASCII-character

That is, the characters ! \ (exclamation-point backslash) preceding a single ASCII character
represent the corresponding object of TYPE CHARACTER (PRIMTYPE WORD). (The characters !.
(exclamation-point double-quote) preceding a character are also acceptable for inputting a
CHARACTER, for historical reasons.)

The SUBR ISTRING will produce an error if you give it an argument that produces a non-CHARACTER.
STRING can take either CHARACTERs or STRINGs.

There are no SUBRs which uniquely manipulate PRIMTYPE STRINGs. but some are particularly useful
in connection with them:

7.6.6.1. ASCII [1]

(ASCII fix-or-character>

If its argument is of TYPE FIX, ASCII evaluates to the CHARACTER with the 7-bit ASCII code of its
argument. Example: (ASCII 65> evaluates to ! \A.

If its argument is of TYPE CHARACTER, ASCII evaluates to the FIXed-point number which is its
argument's 7·bit ASCII code. Example: (ASCII ! \Z> .evaluates to 90.

[Actually. a FIX can be CHTYPEd to a CHARACTER (or vice versa) directly. but ASCII check! in the
former case that the FIX is within the permissible range.]

7.6.6.2. PARSE [1]

(PARSE string radix:fix>

PARSE applies to its argument READ's algorithm for converting ASCII representations to MDL
Objects and returns the first object created. The remainder of string. after the first object
represented, is ignored. radix (optional, default ten) is used for converting any FIXes that occur.
[See also sections 15.7.2 and 17.1.3 for additional arguments.]

7.6.6 - 7.6.6.2 Structured Objects

64

7.6.6.S. lPARSE [1]

LPARSE ("list parse") is exactly like PARSE (above), except that it parses the entire string and returns a
LIST of aU objects created. If given an empty STRING or one containing only separators, LPARSE
returns an empty LIST. whereas PARSE gets an error.

7.6.6.4. UN PARSE [1]

<UNPARSE any radix:fix>

UNPARSE applies to its argument PRINT's algorithm for converting MDL objects to ASCII
representations and returns a STRING which contaius the CHARACTERs PRINT would have typed out.
[However. this STRING will not contain any of the gratuitous carriage-returns PRINT adds to
accomodate a CHANNELl, finite line-width (section 11.2.7).] radix (optional. default ten) is used for
converting any FIXes that occur.

7.6.7. BYTES

A (PRIMTYPE) BYTES is a string of uniformly.sized bytes. The bytes can be any size between 1 and
36 bits inclusive. A BYTES is similar in some ways to a UVECTOR of FIXes and in some ways to a
STRING of non-seven-bit bytes. The elements of a BYTES are always of TYPE FIX.

The SUBRs BYTES and IBYTES are similar to STRING and ISTRING, respectively, except that each of
the former takes a first argument giving the size of the bytes in the generated BYTES. BYTES takes
one required argument which is a FIX specifying a byte size and any number of PRIMTYPE WORDs.
It returns an object of TYPE BYTES with that byte size containing the objects as elements. These
objects will be ANDBed with the appropriate mask of I-bits to fit in the byte size. IBYTES takes two
required FIXes and one optional argument. It uses the first FIX to specify the byte size and the
second to specify the number of elements. The third argument is repeatedly evaluated to generate
FIXes that become elements of the BYTES (if it is omitted, bytes fiJJed with zeros are generated). The
analog to UTYPE is BYTE-SIZE. Examples:

<BYTES 3 <+ 2 2> 9 -1>$
#3 {4 1 7}
<SET A 0>$
o
<IBYTES 3 9 I(SET A (+ .A 1»>$
#3 {I 2 3 4 5 6 7 0 I}
<IBYTES 3 4>$
113 {O 0 0 O}
<BYTE-SIZE <BYTES 1»$
1

7.6.6.3 - 7.6.7 Structured Objects

65

7.6.8. TEMPLATE

A TEMPLATE is similar to a PL/I "structure" of one level: the elements are packed together and
reduced in size to save storage space. while an auxiliary internal data structure describes the
packing format and the elements' real TYPEs (appendix 1). The interpreter itself is not able to create
objects of PRIMTYPE TEMPLATE (ref 1); however. it can apply the standard built-in Subroutines to
them. with the same effects as with other "arrays".

7.7. SEGMENTs [1]

Objects of TYPE SEGMENT {whose TYPEPRIM is LISn look very much like FORMs. SEGMENTs. however.
undergo a non-standard evaluation designed to ease the construction of structured objects from
elements of other structured objects.

7.7.1. Representation [1]

The representation of an object of TYPE SEGMENT is the following:

! (func arg I arg2 ••• argn! >

where the second ! (exclamation-point) is optional. and func and argl through argn are any legal
consituents of a FORM (that is, anything). The pointed brackets can be implicit. as in the period and
comma notation for LVAL and GVAL

All of the folJowing are SEGMENTs:

1(3 .FOO) I.FOO I.FOO

7.7.2. Evaluation [1]

A SEGMENT is evaluated in exactly the same manner u a FORM, with the following three exceptions:

(1) It had better be done inside an EVAL of a structure, else error. (See special case of FORMs in
section 7.7.5 below.)

(2) It had better EVAL to a structured object. else error.
(3) What actually gets inserted into the structure being built are the elements of the structure

returned by the FORM-like evaluation.

7.6.8 - 7.7.2 Structured Objects

66

7.7.a. Examples [l]

(SET ZOP '![2 3 4])$
![2 34!]
(SET ARF (B 3 4»S
(B 3 4)
(.ARF ! .ZOP)S
«B 3 4) 2 3 4)
![! .ZOP !(REST .ARF>!]$
![23434!]

(SET S "STRUNG.">$
·STRUNG.-
(! .S)$
(!\S !\T I\R !\U !\N !\G !\.)

(SET NIL (»$
()

[! .NIL]$
[]

7.7.4. Note on Efficiency [1]

Most of the cases in which it is possible to use SEGMENTs require EVAL to generate an entire new
object. Naturally. this uses up both storage and time. However. there is one case which it is
possible to handle without copying. and EVAL uses it. When the structure being built is a PRII1TYPE
LIST. and the segment value of a PRIMTYPE LIST is the last (rightmost) element being concatenated.
that last PRIMTYPE LIST is not copied. This case is similar to CONS and is the principle reason why
PRIM TYPE LISTs have their structures more easily varied than PRIMTYPE VECTOR or UVECTOR.

Examples:

.ARFS
(B 3 4)

This does not copy ARF:

These do:

(1 2 I.ARF)$
(1 2 B 3 4)

(1 I.ARF 2)
(1 B 3 4 2)

;"not last element"$

7.7.8 • 7.7.4 Structured Objects

[1 Z I.ARF] t "not PRIM TYPE LISPS
[1 2 B 3 4]
(1 Z I.ARF I<REST 1(1») ;"still not last element"S
(1 2 B 3 4)

Note the following, which occurs because copying does !!2!. take place:

<SET DOG (A !.ARF»S
(A B 3 4)
<PUT .ARF 1 "BOWOW")S
(aBOWOWIl 3 4)
.DOGS
(A "BOWOW" 3 4)
<PUT .DOG 3 "WOOP)S
(A "BOWOW" "WOOF" 4)
.ARFS
(aBOWOW" "WOOFII 4)

67

Since ARF was not copied, it was literally part of DOG. Hence, when an element of ARF was changed.
DOG was changed. Similarly, when an element of DOG which ARF shared was changed. ARF was
changed too.

7.7.5. SEGMENTs in FORMs [1]

When a SEGMENT appears as an element of a FORM, the effect is approximately the same as if the
elements of EVAL of the SEGMENT were in the FORM. Example:

<SET A '![1 2 34])S
![1 2 3 41]
<+ I.A 5)S
15

Note: the elements of the structure segment-evaluated in a FORM are not re-evaluated if the thing
being applied is a SUBR. Thus if .A were (1 2 <+ 3 4) 5), the above example would produce an
error; you can't add up FORMs.

You could perform the same summation of 5 and the elements of A by using

<EVAL <CHTYPE (+ I.A 5) FORM»

(Note that EVAL must be explicitly called as a SUBR; if it were not so called. you would just get the
FORM <+ 1 Z 3 4 5) -. not its "value".) However. the latter is more expensive both in time and in
storage; when you use the SEGMENT directly in the FORM, a new FORM is. in fact. not generated 85 it is
in the latter case. (The ~Iements are put on "the control stack- with the other arguments.)

7.7.4 - 7.7.5 Structured Objects

68

7.8. Self-referencing Structures

It is possible for a structured object to "contain" itself, either as a subset or as an element, as an
element of a structured element, etc. Such an object cannot be PRINTed, because recursion begins
and never terminates. Warning: if you try the examples in this section with a live MDL. be sure
you know how to use S (section 1.2) to save PRINT from endless agony. (Certain constructs with
ATOMs can give PRINT similar trouble: see chapters 12 and 15.)

7.8.1. Self-subset

< PUTREST head:primtype-list tail:primtype-/ist>

If head is a subset of tail, that is. if (REST tail fix> is the same object as (REST head 0) for some fix.
then both head and tail will be "circular" (and thus self-referencing) after the PUTREST. Example:

(SET WALTZ (1 2 3»$
(l 2 3)
(PUTREST (REST .WALTZ Z> .WALTZ>S
(3 1 Z 3 1 Z 3 123 123 ...

7.8.2. Self-element

(PUT s 1 :structured fix s2:structured)

If sl is the same Object as s2. then it will "contain" itself (and thus be self-referencing) after the
PUT. Examples:

<SET S <LIST 1 2 3»
(l 2 3)
(PUT .S 3 .S)$
(12(12(12(12
<SET U ![![]]>$
I [I [I] I]
(PUT .U 1 .U>S
![![![![![![...

; "or VECTORIIS

Test your reaction time or your console's bracket-maker. Amaze your friends.

7.8 - 7.8.2 Structured Objects

69

Chapter 8. Truth

S.l. Truth Values [I]

MDL represents "false" with an object of a particular TYPE: TYPE FALSE (un5urpri5ingly). TYPE
FALSE is structured; iu PRIMTYPE is LIST. Thus, you can iive reasons or excuses by making them
eltments of a FALSE. (Again, EVAUni a FALSE neither copies it nor EVALs its elements, 50 it is not
necessary to QUOTE a FALSE appearini in a proiram.) Objecu of TYPE FALSE are represented in "#
notation":

IF ALSE /ist-of-its-elements

The empty FORM evaluates to the empty FALSE:

<>$
IFAlSE ()

Anything which b not FALSE, is, reasonably enouih, true. In this document the "data type" false-or
liMy in metasyntactic variables means that the only significant attribute of the object in that
context is whether its TYPE is FALSE or not.

8.2. Predicates [I]

There are numerous MDL F/SUBRs which can return a FALSE or a true. See appendix 2 to find
them aU. Most return either #FALSE () or the ATOM with PNAME T. (The latter is for historical
reasons, namely Lisp.) Some predicates which are meaningful now are described next.

8.2.1. Arithmetic (1]

< O? fi x-or-float >

evaluates to T only if its ariument is identically equal to 0 or 0.0.

8 - 8.2.1 Truth

70

< 11 fix-or-float>

evaluates to T only if its argument is identically equal to lor 1.0.

< G 1 n:fix-or-float m:fix-or-float)

evaluates to T only if n is algebraically greater than m. L=1 is the Boolean complement of G1; that
is, it is T only if n is not algebraically greater than m.

< L 1 n:fix-or-float m:fix-or-float)

evaluates to T only if n is algebraica])y less than m. G= 1 is the Boolean complement of L 1.

8.2.2. Equality and Membership [1]

<==1 e1:any e2:any)

evaluates to T only if e1 is the ~ ob jeet as e2 (appendix 1). Two objects that look the same
when PRINTed may not be ==1. Two FIXes of the same ·value" are "the same Object"; so are two
FLOATs of exactly the same "value". Empty objects of PRIMTYPE LIST (and no other structured
PRIMTYPE) are == 1 if their TYPEs are the same. Example:

<==1 <SET X "RANDOM STRING") (TOP (REST .X 6»)$
T
<==1 .X "RANDOM STRING")$
IFALSE ()

N==7 is the Boolean complement of ==1.

<=1 e1:any e2:any)

evaluates to T if e1 and e2 have the same TYPE and are structurally equal. - that is, they -look the
same", their printed representations are the same. =1 is much slower than u1. =7 should be used
only when its characteristics are necessary; they are not in any comparisons of unstructured objects.
-=-=1 and =1 always return the same value for FIXes, FLOATs, ATOMs, etc. (Mnemonically, ==1 tests for
"more equality" than =1; in fact, it tests for actual physical identity.)

Example, illustrating non.copying of a SEGMENT in Direct Representation of a LIST:

<SET A '(I 2 3»$
(1 2 3)
<==1 .A (! .A»$
T
<==1 .A <SET B (LIST I.A»)S

8.2.1 • 8.2.2 Truth

#FALSE ()
<:7 .A .B>$
T

N=? is the Boolean complement of =1.

<MEHBER object:any structured>

71

runs down structured from first to last element. comparing each element of structured with object.
If it finds an element of structured which is =7 to object. it returns (REST structured i> (which is of
TYPE (PRIMTYPE structured». where the (i+1)th element of structured is =1 to object. That is. the
first element of what it returns is the first element of structured that is = 7 to object.

If no element of structured is -1 to object. MEMBER returns IFALSE ().

The search is more efficient if structured is of PRIMTYPE VECTOR (or UVECTOR, if possible) than if it
is of PRIHTYPE LIST. As usual. if structured is constant. it should be QUOTEd.

If object and structured are of PRIMTYPE STRING [or BYTES]. MEMBER does a substring search.
Example:

(MEMBER "PART" "SUM OF PARTS">$
• PARTS"

(MEMQ object:any structured>

('"member quick; is exactly the same as MEMBER, except that the comparison test is ==7 .

(STRCOMP sl s2>

("string comparison") can be given either two STRINGs or two ATOMs as arguments. In the latter case
the PNAMEs are used. It actually isn't a predicate. since it can return three possible values: 0 if s1 is
=? to sa 1 if 51 sorts aJphabeticalJy after 52; and -1 if 51 sorts alphabetically before 52.
"Alphabetically" means. in this case. according to the numeric order of ASCII. with the standard
alphabetizing rules.

[A predicate suitable for an ascending SORT (which see) is (G7 (STRCOMP .ARGI .ARGZ) 0).]

8.2.3. Boolean Operators [1]

(NOT e:faI5e-or-any>

evaluates to T only if e evaluates to a FALSE. and to IFALSE () otherwise.

8.2.2 • 8.2.3 Truth

<AND e1 e2 ••• eN>

AND is an FSUBR. It evaluates its arguments from first to last as they appear in the FORM. As soon
as one of them evaluates to a FALSE, it returns that FALSE, ignoring any remaining arguments. If
none of them evaluate to FALSE, it returns EVAL of its last argument. <AND) returns T. AND? is the
SUBR equivalent to AND, that is, all its arguments are evaluated before any of them is tested.

<OR e1 e2 ... eN>

OR is an FSUBR. It evaluates its arguments from first to last as they appear in the FORM. As soon as
one of them evaluates to a non-FALSE, OR returns that non-FALSE value, ignoring any remaining
arguments. If this never occurs, it returns the last FALSE it saw. <OR> returns IFALSE (). OR? is
the SUBR equivalent to OR.

8.2.4. Object Properties [1]

<TYPE? any type-l ••• type-N>

evaluates to type-i only if <==? type-i <TYPE any» is true. It is faster and gives more information
than ORing tests for each TYPE. If the test fails for all type-is, TYPE? returns IFALSE ().

<APPLICABLE? e)

evaluates to T only if e is of a TYPE that can legally be appJied to arguments in a FORM. that is. be
(EVAL of) the first element of a FORM being evaluated (appendix 3).

<HONAD? e>

evaluates to 'FALSE () only if NTH and REST (with nonzero second argument) can be performed on
its argument without error. An unstructured or empty structured object will cause MONAD? to return
T.

<STRUCTURED? e)

evaluates to T only if e is a structured object. It is ~ the inverse of HONAO?, since each returns T
if its argument is an empty structure.

<EMPTY? structured>

evaluates to T only if its argument, which must be a structured object. has no elements.

(LENGTH? structured fix)

8.2.3 - 8.2.4 Truth

73

evaluates to (LENGTH structured> only if that is less than or equal to fiX; otherwise, it evaluates to
flFALSE ().

[If structured is a circular PRIMTYPE LIST, LENGTH? wi)) return a value, whereas LENGTH will execute
forever. To see if you can do (REST structured (+ 1 fix» without error, do the test (NOT (LENGTH?
structured fix». MnemonicaJJy, you can think of the first two letters of LENGTH? as signifying the
"Jess than or equal to" sense of the test.]

8.S. COND [Il

The MDL Subroutine which is most used for varying evaluation depending on a truth value is the
FSUBR COND ("conditional'. A can to COND has this format:

(COND clause-l:list ••• c/ause-N:list>

where N is at least one.

COND always returns the result of the!!!!. evaluation it performs. The fonowing rules determine the
order of evaluations performed.

(I) Evaluate the first element of each clause (from first to last) until either a non-FALSE object
results or the clauses are exhausted.

(2) If a non-FALSE object is found in (I), immediately evaluate the remaining elements (if any)
of that clause and ignore any remaining clauses.

In other words. COND goes walking down its clauses, EVAUng the first element of each clause. looking
for a non-FALSE result. As soon as it finds a non-FALSE, it forgets about an the other clauses and
evaluates. in order, the other elements of the current clause and returns the last thing it evaluates.
If it can't find a non-FALSE, it returns the last FALSE it saw.

8.3.1. Examples [1]

(SET F I (l) >S
(1)
(COND «EMPTY? .F> EMP) «I? (LENGTH .F» ONE»S
ONE
(SET F (»S
()
(COND «EMPTY? .F> EMP) «I? (LENGTH .F» ONE»S
EMP
(SET F '(1 2 3»S

8.2.4 - 8.3.1 Truth

74

(l 2 3)

<COND «EMPTY? .F> EMP) «I? <LENGTH .F» ONE»$
#FALSE ()
<COND «LENGTH? .F 2> SMALL) (BIG»$
BIG

(DEFINE FACT (N) ;"the standard recursive factorial-
<COND «O? .N> 1)

FACT
(FACT 5>$
120

(ELSE <* .N <FACT (- .N 1»»»$

8.4. Shortcuts with Conditionals

8.4.1. AND and OR as Short CONOs

Since AND and OR are FSUBRs. they can be used as miniature CONOs. A construct of the form

<AND pre-conditions action(s»

or

(OR pre-exclusions action(s»

will a))ow action(s) to be evaluated only if all the pre-conditions are true or only if all the pre
exclusions are false. respectively. By nesting and using both AND and OR. fairly powerful cOllstructs
can be made. Of course. if action(s) are more than one thing. you must be careful that none but the
last returns false or true. respectively. Watch out especially for TERPRI (chapter 11). Examples:

<AND (ASSIGNED? FLAG> .FLAG (FeN .ARG»

applies FCN only if someone else has SET FLAG to true. (ASSIGNED? is true if its argument ATOM has
an LVAL) No error can occur in the testing of FLAG because of the order of evaluation.

(AND (SET C (OPEN "READ" "A FILE"» (LOAD .C> (CLOSE .C»

effectively FLOADs the file (chapter 11) without the possibility of getting an error if the file cannot
be opened.

8.3.1 - 8.4.1 Truth

75

8.4.2. Embedded Unconditionals

One of the disadvantages of COND is that there is no straightforward way to do things
unconditionally in between tests. One way around this problem is to insert a dummy clause that
never succeeds, because its only LIST element is an AND that returns a FALSE for the test. Example:

<COHO «01 .N> <FO .N»
«11 .N> <Fl .N»
«AND <SET N <* 2 <FIX <I .N 2»»

;"Round .N down to even number."
<»)

«LENGTH? .VEC .N> I[])

(T <REST .VEC <+ 1 .N»»

A variation is to make the last AND argument into the test for the CONO clause. (That is. the third
and fourth clauses in the above example can be combined.) Of course. you must be careful that no
other AND argument evaluates to a FALSE; most Subroutines do not return a FALSE without a very
good reason for it. (A notable exception is TERPRI (which see).) Even safer is to use PROG (section
10.1) instead of AND.

Another variation is to increase the nesting with a new CONO after the unconditional part. At least
this method does not make the code appear to a human reader as though it does something other
than what it really does. The above example could be done this way:

<COHO «07 .N> <FO .N»
«11 .N> <Fl .N»
(T

(SET N <* 2 <FIX <I .N 2»»
(CONO «LENGTH? .VEC .N> Ie])

(T <REST .VEC <+ 1 .N»»»

8.4.2 Truth

76

Chapter 9. Funotions

This chapter could be named "fun and games with argument LISTs". Its purpose is to explain the
more complicated things which can be done with FUNCTIONs, and this involves, basically. explaining
all the various tokens which can appear in the argument LIST of a FUNCTION. Topics are covered in
what is approximately an order of increasing complexity. This order has little to do with the order
in which tokens can actuaJly appear in an argument LIST. so what an argument LIST "looks like"
overall gets rather lost in the shuffle. To alleviate this problem, section 9.9 is a summary of
everything that can go into an argument LIST. in the correct order. If you find yourself getting
lost, please refer to that summary.

9.1. ·OPTIONAL· [1]

MDL provides very convenient means for allowing optional arguments. The STRING ·OPTIONAL·
(or IIOPT- - they're totally equivalent) in the argument LIST aJlows the specification of optional
arguments with default values. The syntax of the "OPTIONAL" part of the argument LIST is as
follows:

-OPTIONAL II al-1 al-2 ••• al-N

First, there is the STRING "OPTIONAL". Then there is any number of either ATOMs or two-element
LISTs. intermixed, one per optional argument. The first element of each two-element LIST must be
an ATOM; this is the dummy variable. The second element is an arbitrary MDL expression. If there
are required arguments. they must come before the "OPTIONAL".

When EVAL is binding the variables of a FUNCTION and sees "OPTIONAL-, the foJlowing happens:

If an explicit argument was given in the position of an optional one. the explicit argument Is
bound to the corresponding dummy ATOM.

If there is no explicit argument and the ATOM stands alone. that is. it is not the first element of
a two-element LIST. that ATOM becomes "bound", but no local value is assigned to it [see below].
A local value can be assigned to it by using SET.

9 - 9.1 Functions

77

If there is no explicit argument and the ATOM is the first element of a two-element LIST. the
MDL expression in the LIST with the ATOM is evaluated and bound to the ATOM.

[Until an ATOM is assigned. any attempt to reference its LVAL will produce an error. The predicate
SUBRs BOUND? and ASSIGNED? can be used to check for such situations. BOUND? returns T if its
argument is currently bound via an argument LIST or has ever been SET while not bound via an
argument LIST. The latter kind of binding is called "top-level binding-. because it is done outside
all active argument-LIST binding. ASSIGNED? will return IFALSE () if its argument is either
unaSSigned 2!. unbound. By the way. there are two predicates for global values similar to BOUND?
and ASSIGNED? namely GBOUND? and GASSIGNED? Each returns T only if its argument. which Cas in
BOUND? and ASSIGNED?) must be an ATOM, has a global value -slot- (chapter 22) or a gJobal value.
respectively.]

Example:

(OEFINE INC1 (A "OPTIONAL" (N 1» <SET .A <+ •• A .N»)S
INC1
<SET B O)S
o
(INC1 B)S
1
<INC1 B 5)S
6

Here we defined another (not quite working) increment FUNCTION. It now takes an optional
argument specifying how much to increment the ATOM it i. given. If not given. the increment is 1.
Now. 1 is a pretty simple MDL expression; there is no reason why the optional argument cannot be
complicated - for example. a call to a FUNCTION which reads a file on an I/O device.

9.2. TUPLEs

9.2.1. -TUPLE- and TUPLE (the TYPE) [1]

There are also times when you want to be abJe to have an arbitrary number of arguments. You can
always do this by defining the FUNCTION as having a structure as its argument. with the arbitrary
number of arguments as elements of the structure. This can. however. lead to inelegant-looking
FORMs and extra garbage to be collected. The STRING "TUPLE" appearing in the argument LIST
allows you to avoid that. It must follow explicit and optional dummy arguments (if there are any
of either) and must be followed by an ATOM.

The effect of "TUPLE" appearing in an argument LIST i$ the following: any arguments left in the

9.1 - 9.2.1 Functions

78

FORM, after satisfying explicit and optional arguments. are EVALed and made sequential elements of
an object of TYPE and PRIMTYPE TUPLE. The TUPLE is then bound to the ATOM following "TUPLE" in
the argument LIST. If there were no arguments left by the time the nTUPLE- was reached. an empty
TUPLE is bound to the ATOH.

An object of TYPE TUPLE is exactly the same as a VECTOR except that a TUPLE is not held in
garbage-collected storage. It is instead held with ATOM bindings in a control stack. This does not
affect manipulation of the TUPLE within the function generating it or any function called within
that one; it can be treated just like a VECTOR. Note, however, that a TUPLE ceases to exist when the
function which generated it returns. Returning a TUPLE as a value is a good way to generate an
error. (A copy of a TUPLE can easily be generated by segment-evaluating the TUPLE into something;
that copy can be returned.) The predicate LEGAL? returns IFALSE () if it is given a TUPLE
generated by an APPLICABLE object which has already returned, and T if it is given a TUPLE which is
still "gOOd".

[Note to linear readers: you now are equipped to understand the NEWTYPE examples in section 6.4.4
completely.]

Example:

<DEFINE NTHARG (N "TUPLE" T)
;"Get all but first argument into T."

<COND «=-1 1 .N> 1)
;"If N is 1, return 1st arg, i.e .•• N,

i.e., 1. Note that (11 .N> would be
true even if .N were 1.0."

«L1 (LENGTH .T> (SET N (- .N 1»>
'FALSE ("DUMMylI»

;"Check to see if there is an Nth arg,
and make N a good index into T while
you're at it.
If there isn't an Nth arg, complain."

(ELSE (NTH .T .N»»

NTHARG. above. takes any number of arguments. Its first argument must be of TYPE FIX. It returns
EVAL of its Nth argument. if it has an Nth argument. If it doesn't, it returns 'FALSE ("DUMMY").
(The ELSE is not absolutely necessary in the last clause. If the Nth argument is a FALSE. the COND
will return that FALSE.) Exercise for the reader: NTHARG will generate an error if its first argument
is not FIX. Where and why? (How about (NTHARG 1.5 Z 3>?) Fix it.

9.2.2. TUPLE (the SUBR) and ITUPLE

These SUBRs are the same as VECTOR and IVECTOR. except that they build TUPLEs (that is, vectors on

9.2.1 - 9.2.2 Functions

79

the control stack). They can be used only at top level in an "OPTIONAL" list or "AUX" li5t (see
below). The clear advantage of TUPLE and ITUPLE ("implicit tuplej is in storage.management
efficiency. They produce no garbage. since they are flushed automatically upon function return.

Examples:

<DEFINE F (A 8 -AUX· (C (ITUPLE 10 3») •••)

creates a lO-element TUPLE and SETs C to it.

(DEFINE H ("OPTIONAL" (A (ITUPLE 10 '(1»)
"AUX" (8 (TUPLE I.A 123»)
... >

These are valid uses of TUPLE and ITUPLE. However, the following i, ru!!. a valid use of TUPLE,
because it is not caUed at top level of the "AUX":

(DEFINE NO (A B "AUX" (C (REST (TUPLE I.A»» •••)

However, the desired effect could be achieved by

<DEFINE OK (A B "AUX" (0 <TUPLE I.A» (C <REST .0») ••• >

-AUX· (or "EXTRA" - they're totally equivalent) are STRINGs which, placed in an argument LIST,
serve to dynamically allocate temporary variables for the Ule of a Function.

aAUX" must appear in the argument LIST after any information about explicit arguments. It is
followed by ATOMs or two-element LISTs as if it were "OPTIONAL". ATOMs in the two-element LISTs
are bound to EVAL of the second element in the LIST. Atoms not in such LISTs are initially
unassigned; they are explicitly given "no" LVAL

AU binding specified in an argument LIST is done sequentially from first to last. 10 initialiution
expressions for "AUX" (or "OPTIONAL") can refer to objects which have jU5t been bound. For
example. this works:

<DEFINE AUXEX ("TUPLE" T
. "AUX" (A (LENGTH • T» (8 (JI 2 .A»)

![.A .8]>S
AUXEX
<AUXEX 1 2 "FOO")S
1[361J

9.2.2 • 9.3 Function5

80

9.4. QUOTEd arguments [1]

If an ATOM in an argument LIST which is to be bound to a required or optional argument is
.surrounded by a caH to QUOTE. that ATOM is bound to the unevaluated argument. Example:

<DEFINE Q2 (A 18) (.A .8»$
02
<02 <+ 1 2) <+ 1 Z»$
(3 <+ 1 2»

9.5. IIARGSII [1]

The indicator IIARGS" can appear in an argument LIST with precisely the same syntax as "TUPLE".
However. IIARGS· causes the ATOM foHowing it to be bound to a LIST of the remaining unevaluated
argument.s.

IIARGSII does not cause any copying to take place. It simply gives you

<REST application:form fix>

with an appropriate fix. The TYPE change to LIST is a result of the REST. Since the LIST shares
all its elements with the original FORM. PUTs into the LIST wiJI change the calling program.
however dangerous that may be.

Examples:

<DEFINE QIT (N "ARGS· L) <.N .L»$
OIT
<QIT 2 <+ 3 4) <LENGTH ,QALL) FOO>S
<LENGTH ,QALL)

<DEFINE FUNCTI ("ARGS" ARGL-AND-BODY)
<CHTYPE .ARGL-AND-BODY FUNCTION»$

FUNCTI
<FUNCTI (A B) <+ .A .8»$
IFUNCTION «A B) <+ .A .B»

The last example is a perfectly vaJid equivalent of the FSUBR FUNCTION.

9.4 - 9.5 Functions

81

9.6. "CAll"

The indicator "CALL" is an ultimate "ARGS". If it appears in an argument LIST, it must be followed
by an ATOM and must be the only thing used to gather arguments. nCALL" causes the ATOM which
follows it to become bound to the actual FORM that is being evaluated - that is, you get the
-function caJl" itself. Since "CALL II binds to the FORM itself, and not a copy, PUTs into that FORM will
change the calling code.

·CAll· exists as a Catch-22 for argument manipulation. If you can't do it with ·CALl-, it can't be
done.

9.7. EVAL and "BIND II

Obtaining unevaluated arguments. for example, via QUOTE and "ARGS", very often implies that you
wish to evaluate them at some point. You can do this by explicitly caUing EVAL. which is a SUBR.
Example:

(SET F '(+ 1 Z»$
<+ 1 Z>
<EVAL .F>$
3

EVAl can take a second argument, of TYPE ENVIRONMENT (or others, see section 20.8 below). An
ENVIRONMENT consists basically of a state of ATOM billdings; it is the "world" mentioned in chapter 5.
Now, since binding changes the ENVIRONMENT, if you wish to use EVAL within a FUNCTION, you
probably want to get hold of the environment which existed before that FUNCTION's binding took
place. The indicator "BIND''. which must, if it is used, be the first thing in an argument LIST,
provides this information. It binds the ATOM immediately following it to the ENVIRONMENT existing
-at call time" - that is, just before any binding is done for its FUNCTION. Example:

<SET A 0>$
o
<DEFINE WRONG ('8 "AUX" (A 1» <EVAL .B»$
WRONG
(WRONG .A>$
1
(DEFINE RIGHT (IIBIND" E 'B "AUX" (A 1» <EVAL .B .E»$
RIGHT
<RIGHT .A>$
o

9.6 • 9.7 Functions

82

9.7.1. Local Values versus ENVIRONMENTs

SET, LVAL, VALUE, BOUND?, ASSIGNED? and UNASSIGN all take a final optional argument which
has not previously been mentioned: an ENVIRONMENT (or other TYPEs, see section 20.8 below). If
this argument is given, the SET or LVAL is done in the ENVIRONMENT specified. LVAL cannot be
abbreviated by • (period) if it is given an expJicit second argument.

This feature is just what is needed to cure the INC bug mentioned in chapter 5. A "correct" INC can
be defined as follows:

<DEFINE INC (IIBINDII OUTER ATM)
<SET .ATM <+ 1 <LVAL .ATM .OUTER» .OUTER»

9.S. ACTIVATION, "NAME", "ACT", AGAIN, and RETURN [1]

EVAluation of a FUNCTION, after the argument LIST has been taken care of. normally consists of
EVALuating each of the objects in the body in the order given. and returning the value of the last
thing EVALed. If you want to vary this sequence. you need to know. at least, where the FUNCTION
begins. Actually. EVAL normally hasn't the foggiest idea of where its current FUNCTION began.
"Where'd I start" information is bundled up with a TYPE caUed ACTIVATION. In "normal" FUNCTION
EVALuation, ACTIVATIONs are not generated; one can be generated, and bound to an ATOM. in either of
the two following ways:

(I) Put an ATOM immediately before the argument LIST. The ACTIVATION of the Function will
be bound to that ATOM.

(2) As the last thing in the argument LIST, insert either of the STRINGs "NAME" or "ACT- and
follow it with an ATOM. The ATOM will be bound to the ACTIVATION of the Function.

In this document "Function" (capitaJized) wi)) designate anything that can generate an ACTIVATION;
besides TYPE FUNCTION. this class includes the FSUBRs PROG, BIND, and REPEAT, yet to be discussed.

Each ACTIVATION refers explicitly to a particular evaluation of a Function. For example, if a
recursive FUNCTION generates an ACTIVATION. a new ACTIVATION referring explicitly to each
recursion step is generated on every recursion.

Like TUPLEs, ACTIVATIONs are held in a control stack. Unlike TUPLEs. there is ~ way to get a copy
of an ACTIVATION which can usefully be returned as a value. (This is a consequence of the fact that
ACTIVATIONs refer to evaluations; when the evaluation is finished, the ACTIVATION no longer exists.)
ACTIVATIONs can be tested. like TUPLEs, by LEGAL? for legality. They are used by the SUB~ AGAIN
and RETURN.

9.7.1- 9.8 Functions

83

AGAIN can take one argument: an ACTIVATION. It means "start doing this again", where "this" is
specified by the ACTIVATION. Specifically. AGAIN causes EVAL to return to where it started working
on the body of the Function in the evaluation specified by the ACTIVATION. The evaluation is not
redone completely; in particular. no re-binding (of arguments. "AUX" variables, etc.) is done.

RETURN can take two arguments: an arbitrary expression and an ACTIVATION, in that order. It
causes the Function evaluation whose ACTIVATION it is given to terminate and return EVAL of
RETURN's first argument. That is. RETURN means "quit doing this and return that", where "this" is the
ACTIVATION - its second argument - and "that" is the expression - its first argument. Example:

(DEfINE HY+ (IITUPLE II T "AUX" (M 0) "NAME" NM)
(CONO «EMPTY? .T> <RETURN .M .NM»>
(SET H <+ .M <I .T»>
<SET T <REST .T»
<AGAIN .NM»$

MY+
<MY+ 1 3 <LENGTH "FOO"»$
7
<MY+>S
o

Note: suppose an ACTIVATION of one Function (call it Fl) is passed to another Function (call it F2) -
for example, via an application of F2 within Fl with Fl's ACTIVATION as an argument. If F2
RETURNs to FI's ACTIVATION. F2 and Fl terminate immediately. and Fl returns the RETURN's first
argument. Good for error exits. AGAIN can clearly pull a similar trick. In the following example,
Fl computes the sum of F2 applied to each of its arguments; F2 computes the product of the
elements of its structured argument, but it aborts if it finds an element that is not a number.

<DEFINE Fl ACT ("TUPLE" T "AUK" (Tl .T»

FI

<COND «NOT <EMPTY? .Tl»
<PUT .Tl 1 <F2 <1 .Tl> .ACT»
<SET Tl <REST .Tl»
<AGAIN .ACT»

(ELSE <+ !.T»»$

<DEFINE F2 (5 A "AUX" (51 .5»
<REPEAT MY-ACT «PRO 1»

<COND «NOT <EMPTY? .51»

F2

<COND «NOT <TYPE? <1 .51> FIX FLOAT»
<RETURN IFALSE ("NON-NUMBER") .A»

(ELSE <SET PRO <- .PRO <1 .51»»>
<SET 51 <REST .51»)

(ELSE <RETURN .PRD»»>S

9.8 Functions

84

<Fl 1(1 Z) 1(3 4»$
14
<Fl I(T Z) 1(3 4»$
'FALSE ("NON-NUMBER")

9.9. Argument List Summary

The foJJowing is a Jisting of all the various tokens which can appear in the argument LIST of a
FUNCTION, in the order in which they can occur. Short descriptions of their effects are included. All
of them are optional -- that is, any of them (in any position) can be left out or included - but the
order in which they appear must be that of this Jist. "QUOTEd ATOM", "matching object-, and "2-list"
are defined below.

(1) "BIND"
must be followed by an ATOM. It binds that ATOM to the ENVIRONMENT which existed
when the FUNCTION was applied.

(2) ATOMs and QUOTEd ATOMs (any number)
are required arguments. QUOTEd ATOMs are bound to the matching object. ATOMs are
bound to EVAL of the matching object in the ENVIRONMENT existing when the FUNCTION
was applied.

(S) "OPTIONAL" or "OPT" (they're equivalent)
is followed by any number of ATOMs, QUOTEd ATOMs, or 2-lists. These are optional
arguments. If a matching jbject exists, an ATOM - either standing alone or the first
element of a 2-list -- is bound to EVAL of the object, performed in the ENVIRONMENT
existing when the FUNCTION was applied. A QUOTEd ATOM - alone or in a 2-list - is
bound to the matching object itself. If no such object exists, ATOMs and QUOTEd ATOMs
are left unbound, and the first element of each 2-list is bound to EVAL of the
corresponding second element. (This EVAL is done in the new ENVIRONMENT of the
Function as it is being constructed.)

(4) "ARGS" (and!!.2!. "TUPLE")
must be followed by an ATOM. The ATOM is bound to a LIST of !!! the remammg
arguments, unevaluated. (If there are no more arguments. the LIST is empty.) This
LIST is actually a REST of the FORM applying the FUNCTION. If "ARGS" appears in the
argument LIST, "TUPLE u should not appear.

9.8 • 9.9 Functions

85

(4) "TUPLE" (and not IIARGS")
must be followed by an ATOM. The ATOM is bound to a TUPLE ("VECTOR on the control
stack") of all the remaining arguments, evaluated in the environment existing when the
FUNCTION was applied. (If no arguments remain, the TUPLE is empty.) If "TUPLE"
appears in the argument LIST, "ARGS" should not appear.

(5) -AUX- or -EXTRA- (they're equivalent)
is followed by any number of ATOMs or 2·lists. These are auxiliary variables, bound
away from the previous environment for the use of this Function. ATOMs are bound in
the ENVIRONMENT of the Function, but they are unassigned; the first element of each 2-
list is both bound and assigned to EVAL of the corresponding second element. (This
EVAL is done in the new ENVIRONMENT of the Function as it is being constructed.)

(6) -NAME- or "ACT" (they're equivalent)
must be followed by an ATOM. The ATOM is bound to the ACTIVATION of the current
evaluation of the Function.

ALSO - in place of sections (2) (8) and (4), you can have

(2-S-4) - CALL -
which must be followed by an ATOM. The ATOM is bound to the FORM which caused
application of this FUNCTION.

The special terms used above mean this:

"QUOTEd ATOM" - a two·element FORM whose first element is the ATOI1 QUOTE, and whose HCOnd
element is any ATOM. (Can be typed •• and will be PRINTed -- as I atom.)

"Matching object" -- that element of a FORM whose position in the FORM matches the position of a
required or optional argument in an argument LIST.

'"2-list" - a two-element LIST whose first element is an ATOM (or QUOTEd ATOM; see below) and whose
second element can be anything but a SEGMENT. EVAL of the second element is assigned to a new
binding of the first element (the ATOM) as the "default value" in "OPTIONAL" or the "initial value" in
"AUX". In the case of "OPTIONAL", the first element of a 2·Jist can be a QUOTEd ATOM; in this case,
an argument which is supplied is not EVALed. but if it is not supplied the second element of the
LIST is EVALed and assigned to the ATOM.

9.9 FUllctions

86

9.10. APPLY [1]

Occasionally there is a valid reason for the first element of a FORH not to be an ATOH. For example.
the object to be applied to arguments may be chosen at run time. or it may depend on the
arguments in some way. While EVAL is perfectly happy in this case to EVALuate the first element
and go on from there. the compiler (ref 7) call generate more efficient code if it knows whether the
result of the evaluation will (1) always be of TYPE FIX, (2) always be an applicable (non-FIX) object
that evaluates all its arguments. or (3) neither. The easiest way to tell the compiler if (I) or (2) is
true is to use the ATOH NTH (section 7.1.2) in case (1) or APPLY in case (2) as the first element of the
FORM.

(APPLY object arg-l ••• arg-N)

evaluates object and all the arg-is and then applies the former to all the latter. An error occurs if
Object evaluates to something not applicable, or to an FSUBR, or to a FUNCTION (or user Subroutine -
chapter 19) with IIARGS· or "CALL" or QUOTEd arguments.

Example:

(APPLY (NTH .ANALYZERS
(LENGTH (MEMQ <TYPE .ARG> .ARGTYPES»>

.ARG>

caUs a function to analyze .ARG. Which function is called depends on the TYPE of the argument;
this represents the idea of a dispatch table.

9.11. CLOSURE

(CLOSURE function .1 ... • N>

where function is a FUNCTION, and a1 through aN are any number of ATOHs. returns an object of TYPE
CLOSURE. This can be applied like any other function, but. whenever it is applied. the ATOMs given
in the call to CLOSURE are first bound to the VALUEs they had when the CLOSURE was generated. then
the function is applied as normal. This is a "poor man's funarg".

A CLOSURE is useful when a FUNCTION must have state information remembered between calls to it,
especially in these two cases: when the LVALs of external state ATOMs might be compromised by other
programs, or when more than one distinct sequence of calls are active concurrently. Example of the
latter: each Object of a structured NEWTYPE might have an associated CLOSURE that coughs up one
element at a time. remembering between calls how far it got. Often only one ATOM will be included
in the CLOSURE, with a value in the CLOSURE that is a structure containing all the relevant
information.

9.10 - 9.11 Functions

87

Chapter 10. Looping

10.1. PROG and REPEAT [1]

PROG and REPEAT are almost identical FSUBRs which make it possible to vary the order of EVALuation
arbitrarily - that is, to have "jumps". The syntax of PROG ("program' is

< PROG act:atom aux:list body)

where

act is an optional ATOM, which is bound to the ACTIVATION of the PROG.

auK is a LIST which looks exactly like that part of a FUNCTION's argument LIST which follows
an • AUX·. and serves exactly the same purpose. It is not optional. If you need no temporary
variables or "ACT", make it ().

body is a non-zero number of arbitrary MDL expressions.

The syntax of REPEAT is identical. except that. of course. REPEAT is the first element of the FORM.
not PROG.

10.1.1. Basic EVAluation [1]

Upon entering a PROG. an ACTIVATION is always generated. If there is an ATOH in the right place.
the ACTIVATION is also bound to that ATOM. The variables in the aux (if any) are then bound a5
indicated in the aux. All of the expressions in body are then EVALuated in their order of occurrence.
If nothing untoward happens. you leave the PROG upon evaluating the last expression in body.
returning the value of that last expression.

PROG thus provides a way to package together a group of things you wish to do, in a somewhat more
limited way than can be done with a FUNCTION. But PROGs are generally used for their other
properties.

10 - 10.1.1 Looping

88

REPEAT acts in all ways exactly like a PROG whose last expression is (AGAIN). The only way to leave
a REPEAT is to explicitly use RETURN (or GO with a TAG - section 10.5).

10.1.2. AGAIN and RETURN in PROG and REPEAT [1]

Within a PROG or REPEAT. you always have a defined ACTIVATION. whether you bind it to an ATOM or
not. [In fact the interpreter binds it to the ATOM LPROG\ ! -INTERRUPTS ("last PROG"). The FSUBR
BIND is identical to PROG except that BIND does not bind that ATOM, 50 that AGAIN and RETURN with
no ACTIVATION-argument will not refer to it. This feature could be useful within MACROs.]

If AGAIN is used with no arguments. it uses the ACTIVATION of the closest surrounding PROG or
REPEAT within the current function (error if none) and re-starts the PROG or REPEAT without
rebinding the aUK variables. just the way it works in a FUNCTION. With an argument. it can of
course re-start any Function (PROG or REPEAT or FUNCTION) within which it is embedded at run time.

As with AGAIN, if RETURN is given no ACTIVATION argument. it uses the ACTIVATION of the closest
surrounding PROG or REPEAT within the current function and causes that PROG or REPEAT to
terminate and return RETURN's first argument. If RETURN is given !!2. arguments, it causes the
closest surrounding PROG or REPEAT to return the ATOM T. Also like AGAIN, it can, with an
ACTIVATION argument. terminate any Function within which it is embedded at run time.

10.I.S. Examples [1]

Examples of the use of PROG are difficult to find, since it is almost never necessary. and it slows
down the interpreter (chapter 24). PROG can be useful as a point of return from the middle of a
computation. or inside a COND (which see). but we won't exemplify these uses. Instead. what follows
is an example of a typically poor use of PROG which has been observed among Lisp programmers
using MDL. Then. the same thing is done using REPEAT. In both cases, the example FUNCTION just
adds up aU its arguments and returns the sum. (The SUBR GO is discussed in section 10.5.)

;-Lisp style"
(OEFINE MY. (MTUPLE" TUP)

(PROG (SUM)
(SET SUM 0>

LP (COND «EMPTY? ;TUP> <RETURN .SUM»>
(SET SUM <+ .SUM <1 .TUP»>
<SET TUP <REST .TUP»
<GO LP»>

10.1.1 - 10.1.3 Looping

;"MDL style"
(DEFINE MY+ ("TUPLE" TUP)

<REPEAT «SUM 0»
<COND «EMPTY? .TUP) <RETURN .SUM»)
<SET SUM <+ .SUM <1 .TUP»
<SET TUP <REST .TUP»»

89

Of course, neither of the above is optimal MDL code for this problem, since MY+ can be written
using SEGMENT evaluation as

<DEFINE MY+ ("TUPLE- TUP) <+ l.TUP»

There are, of course, lots of problems which can't be handled 50 simply, and lots of uses for REPEAT.

10.2. MAPF and MAPR: Basics [1]

MAPF ("map first") and MAPR ("map rest") are two SUBRs which take care of a majority of cases which
require loops over data. The basic idea is the foJ)owing:

Suppose you have a LIST (or other structure) of data, and you want to apply a particular function
to each element. That is exactly what MAPF does; you give it the function and the structure, and it
applies the function to each element of the structure, starting with the first.

On the other hand. suppose you want to change each element of a structure according to a
particular algorithm. This can be done only with great pain u5ing MAPF, since you don't have easy
access to the structure inside the function; you have only the structure's elements. MAPR solves the
problem by applying a function to RESTs of a structure: first to <REST structure 0>, then to
<REST structure I), etc. Thus. the function can change the structure by changing its argument. for
example. by a <PUT argument 1 something>. It can even PUT a new element farther down the
structure, which will be seen by the function on subsequent applications.

Now suppose. in addition to applying a function to a structure, you want to record the results •• the
values returned by the function - in another structure. Both MAPF and MAPR can do this: they both
take an additional function as an argument. and. when the looping is over, apply the additional
function to all the results. and then return the result of that application. Thus. if the additional
function is • LIST, you get a LIST of the previous results; if it is • VECTOR, you get a VECTOR of
results; etc.

Finally, it might be the case that you really want to loop a function over more than one structure
simultaneously. For instance, consider creating a LIST whose elements are the element-by-element
sum of the contents of two other LISTs. Both MAPF and MAPR allow this; you can. in fact, give each
of them any number of structures full of arguments for your looping function.

10.1.3 • 10.2 Looping

90

This was all mentioned because MAPF and MAPR appear to be complex when seen baldly. due to the
fact that the argument descriptions must take into account the general can. Simpler. degenerate
cases are usually the ones used.

10.2.1. MAPF [1]

(HAPF finalf loopf sl s2 .•• sN>

where (after argument evaluation)

finalf is something applicable that evaluates an its arguments. or a FALSE;

loopf is something applicable to N arguments that evaluates all its arguments; and

s1 through sN are structured objects (any TYPE)

does the fonowing:

(1) First. it appJies loopf to N arguments: the first element of each of the structures. Then it
RESTs each of the structures. and does the application again. looping until any of the structures
runs out of elements. Each of the values returned by loopf is recorded in a TUPLE.

(2) Then. it appJies fina/f to all the recorded values simultaneously. and returns the result of that
application. If finalf is a FALSE. the recorded values are "thrown away" (actually never recorded
in the first place) and the MAPF returns only the last value returned by loopf. If any of the si
structures is empty. so that loopf is never invoked. fina/f is applied to no arguments; if finalf is a
FALSE. HAPF returns IF ALSE ().

10.2.2. "APR [1]

(HAPR finalf loopf sl s2 ••• sN>

acts just like MAPF. but. instead of applying loopf to the elements of the structures. it applies it to
RESTs of the structures.

10.2.3. Examples [1]

Make the element·wise sum of two LISTs:

(MAPF ,LIST .+ '(1 2 34) '(10 11 12 13»1
(11 13 15 17)

10.2 • 10.2.3 Looping

Change a UVECTOR to contain double its values:

(SET UV 11[5 6 789]>$
!(5 6 7 8 9!]
(MAPR <>

! [18!]
.UVS

'FUNCTION «L) <PUT .L 1 <- <1 .L> 2»)
.UV>S

![10 12 14 16 18!]

Create a STRING from CHARACTERs:

(MAPF ,STRING 1 I (IIMODELLINGII IIDEVELOPMENT- II LIBRARY-]>$
AMDLII

Sum the squares of the elements of a UVECTOR:

(MAPF ,+ 'FUNCTION «N) <- .N .N» 11[3 4]>S
25

A parallel assignment FUNCTION (Note that the arguments to MAPF are of different lengths.):

(DEFINE PSET (IITUPLEII TUP)

PSET

(MAPF <>
.SET
.TUP
(REST .TUP <I <LENGTH .TUP> 2»»S

(PSET ABC 1 2 3>$
3
.AS
1
.BS
2
.C$
3

91

Note: it is easy to forget that (inalf must evaluate its arguments. which precludes the use of an
FSUBR. It is primarily for this reason that the SUBRs AND? and OR? were invented. As an example.
the predicate =? could have been defined this way:

10.2.3 Looping

92

<DEFINE =? (A B)
<COND «MONAD? .A> <==7 .A .B»

«AND <NOT <MONAD? .B»
<==7 <TYPE .A> <TYPE .B»
< •• ? <LENGTH .A> <LENGTH .B»>

<MAPF ,AND? ,-? .A .B»))

[By the way. the following shows how to construct a value that has the same TYPE as an argument.

<DEFINE HAP-NOT (S)
<COND «MEMQ <PRIMTYPE .S> 'I[LIST VECTOR UVECTOR STRING]>

<CHTYPE <MAPF ,<PRIMTYPE .S> ,NOT .S>
<TYPE .S»)>>

It works because the ATOHs that name the common STRUCTURED PRIMTYPEs (LIST. VECTOR,
UVECTOR and STRING) have as GVALs the corresponding SUBRs to build objects of those TYPEs.]

10.3. More on HAPF and MAPR

10.3.1. HAPRET

HAPRET is a SUBR that enables the loopf being used in a MAPR or MAPF (and lexically within it. that is.
not separated from it by a function call) to return from zero to any number of values as opposed to
just one. For example. suppose a MAPF of the foUowing form is used:

<HAPF ,LIST <FUNCTION (E) ••. > ••• >

Now suppose that the programmer wants to add no elements to the final LIST on some calls to the
FUNCTION and add many on other calls to the FUNCTION. To accomplish this. the FUNCTION simply
calls MAPRET with the elements it wants added to the LIST. More generally. MAPRET causes its
arguments to be added to the final TUPLE of arguments to which the finalf will be applied.

Warning: MAPRET is guaranteed to work only if it is caJled from an explicit FUNCTION which is the
second argument to a MAPF or MAPR. In other words. the second argument to HAPF or MAPR must be
#FUNCTION (•••) or <FUNCTION ••. > if MAPRET is to be used.

Example: the following returns a LIST of aU the ATOMs in an OBLIST (chapter 15):

<DEFINE ATOMS (OB)
<MAPF • LIST

<FUNCTION (BKT) <MAPRET I.BKT»
.OB»

10.2.S • 10.S.1 Looping

93

10.3.2. MAPS TOP

MAPSTOP is the same as MAPRET, except that, after adding its arguments. if any. to the final TUPLE. it
forces the application of finalf to occur, whether or not the structured objects have run out of
element$. Example: the following copies the first ten (or aU) elements of itl argument into a LIST:

(DEFINE FIRST-TEN (STRUC "AUX" (I 10»
(MAPF ,LIST

10.~.~. MAPLEAVE

(FUNCTION (E)
<COND «O? <SET I <- .1 1»> <HAPSTOP .E»>
.E>

.STRUC»

HAP LEAVE is analogous to RETURN, except that it works in (lexically within) HAPF or "APR instead of
PROG or REPEAT. It flushes the accumulated TUPLE of results and returns its argument (optional.
default T) as the value of the MAPF or MAPR. (It finds the MAPF/R that should return in the current
binding of the ATOM LMAP\ ! -INTERRUPTS ("last mapj.) Example: the following finds and returns
the first non-zero element of its argument, or IFALSE () if there is none:

(DEFINE FIRST-NO (STRUC)
("APF <>

<FUNCTION (X)
<COND «N==? .X 0> <MAPLEAVE .X»»

.STRUC»

10.~.4. Only two arguments

If MAPF or MAPR is given only two arguments, the iteration function loop'is applied to no arguments
each time. and the looping continues indefinitely until a MAPLEAVE or HAPSTOP is invoked. This
feature gives MAPF and MAPR all the features of STACKFORM (below). Example: the following returns a
LIST of the integers from one less than its argument to zero.

(OEFINE LNUM (N)
<MAPF • LIST

<FUNCTION ()
<COND «O? <SET N <- .N 1»> <MAPSTOP 0»

(ELSE .N»»>

10.3.2 - 10.3.4 Looping

94

10.4. STACKFORM

STACKFORM is archaic. due to improvements in the implementation of MAPF/R (above). In fact.

(STACKFORM function arg pred)

is exactly equivalent to

(MAPF function
(FUNCTION () (COND (pred srg) (T (MAPSTOP»»)

In fact MAPF/R is more powerful. because MAP RET • MAPSTOP. and HAP LEAVE provide flexibility not
available with STACKFORM.

This FSUBR is used to apply a function to a variable number of arguments. as determined by an
arbitrary predicate. This could also be done by constructing the appropriate FORM and EVALing it.
STACKFORM is more efficient: it builds the "FORM" on the control stack (section 22.1). which produces
no "garbage". This is where STACKFORM obtains its name. One principle use involves processing
input characters. in cases where you don't know how many characters are going to arrive. The
example below demonstrates this, using SUBRs which are more fully explained in chapter 11.
Another example can be found in chapter 13.

An application of STACKFORM looks like this:

(STACKFORM function arg pred)

where
function must EVAL to a function which evaluates all its arguments;
arg is an arbitrary expression; and
pred is another arbitrary expression which should be capable of returning a FALSE when
EVALed.

Evaluation of an application of a STACKFORM proceeds as follows (it is vaguely like a "While" loop):

(1) Evaluate function and place the result on the control stack.

(2) Evaluate pred, and then:

(2.1) If pred evaluated to non.FALSE, evaluate srg and place the result on the control stack.
Then go back to the start of (2).

(2.2) If pred evaluated to a FALSE. apply the stacked function to the stacked args and return
the relult.

10.4 Looping

95

Example: the following FUNCTION reads characters from the current input channel until an $ (ESC)
is read, and then returns what was read as one STRING. (The SUBR READCHR reads one character from
the input channel and returns it. NEXTCHR returns the next CHARACTER which READCHR will return -
chapter 11.)

<DEFINE RDSTR ()

RDSTR

<STACKFORM ,STRING
<READCHR>
<NOT <.~? <NEXTCHR) (ASCII 27»»)$

<PROG () <READCHR) j"Flush the ESC ending this input.
<RDSTR»$

ABC123(+ 3 4)S"ABC123<+ 3 4)"

10.5. GO and TAG

GO is provided in MOL for people who can't recover from a youthful experience with Basic, Fortran.
PL/I. etc. The SUBRs previously described ill this chapter are much more talteful for making good.
clean. -structured" programs. GO just bollixes things.

GO is a SUBR which allows you to break the normal order of evaluation and re-start just before any
top-level expression in a PROG or REPEAT. It can take two TYPEs of arguments: ATOM or TAG.

Given an ATOM. GO searches the body of the immediately surrounding PROG or REPEAT within the
current Function. starting after aux. for an occurrence of that ATOM at the top level of body. (This
search b effectively a MEMQ.) If it doesn't find the ATOM, error. If it does, evaluation is resumed at
the expression following the ATOM.

The SUBR TAG generates and returns objects of TYPE TAG. This SUBR takes one argument: an ATOM
which would be a legal argument for a GO. An object of TYPE TAG contains sufficient information
to allow you to GO to any top-level position in a PROG or REPEAT from within any function called
inside the PROS or REPEAT. GO with a TAG is vaguely like AGAIN with an ACTIVATION; it allows you
to -go back- to the middle of any PROG or REPEAT which called you. Also like ACTIVATIONs, TAGs
into a PROG or REPEAT can no longer be used after the PROG or REPEAT has returned. LEGAL? can be
used to see if a TAG is still valid.

10.4 -10.5 Looping

96

10.6. Looping versus Recursion

Since any program in MDL can be called recursively, champions of "pure Lisp" or somesuch may be
tempted to Implement any repetitive algorithm u.lng recursion. The advantage of the looping
techniques described in this chapter over recursion is that the overhead of calls is eliminated.
However. a long program (say. bigger than half a printed page) may be more difficult to write
iteratively than recursively and hence more difficult to maintain. A program whose repetition i5
controlled by a structured object (for example. "walking a tree" to visit each monad in the object)
often should use looping for covering one "level" of the structure and recursion to change "levels".

10.6 Looping

97

Chapter 11. Input/Output

The transmission of information between an object in MDL and an external storage dev ice can be
done in three ways. Hi.storically. the first way was to convert an object into a string of characters,
or vice versa. The transformation is nearly one-to-one (although some MDL objects, for example
TUPLEs, cannot be input in this way) and 11 similar in style to Fortran's formatted I/O. It is what
READ and PRINT do.

The second way is used for the contents of MDL objects rather than the objects themselves. Here
an image of numbers or characters within an object is transmitted, similar in style to Fortran's
unformatted I/O. Usually imaged I/O cannot be properly done from/to a console.

The third way is to dump an object in a clever format so that it can be reproduced exactly when
input the next time. Exact reproduction means that any sharing between structures or self·
reference is preserved; only the garbage collector itself can do I/O in this way.

11.1. Conversion 110

All conversion.I/O SUBRs in MDL take an optional argument which directs their attention to a
specific I/O channel. This section will describe SUBRs without their optional arguments. In this
situation. they all refer to a default channel, initially the console running the MDL. When given an
optional argument, that argument follows any arguments indicated here. Some of these SUBRs also
have additional optional arguments, relevant to conversion, discussion of which will be deferred
until later.

11.1.1. Input

All of the following input Subroutines, when directed at a console. hang until S (ESC) is typed and
allow normal use of rubout. AD. AL and A@.

11 • 11.1.1 Input/Output

98

11.1.1.1. READ

(READ>

This returns the entire MDL object whose character representation il next in the input stream.
Successive <READ>s return successive objects. This is precisely the SUBR READ mentioned in chapter
2. See also sections 11.3. 15.7.1. and 17.1.3 for optional arguments.

11.1.1.2. READCHR

(READCHR>

("'read characterj returns the next CHARACTER in the input stream. Successive (READCHR>s return
successive CHARACTERs.

11.1.1.S. NEXTCHR

<NEXTCHR>

(-next characterM
) returns the CHARACTER which READCHR wiJ) return the next time READCHR is called.

Multiple (NEXTCHR>s. with no input operations between them. all return the same thing.

11.1.2. Output

If an object to be output requires (or can tolerate) separators within it (for example. between the
elements in a structured object or after the TYPE name in '" notation;. these conversion-output
SUBRs will use a carriage-returnlline-feed separator to prevent overflowing a line. Overflow is
detected in advance from elements of the CHANNEL in use (section 11.2.7).

11.1.2.1. PRINT

(PRINT any>

This outputs. in order.
(1) a carriage-return line-feed.
(2) the character representation of EVAL of its argument (PRINT is a SUBR). and
(3) a space

and then returns EVAL of its argument. This is precisely the SUBR PRINT mentioned in chapter 2.

11.1.2.2. PRIN 1

(PRINl any)

outputs just the representation of, and returns, EVAL of any.

11.1.1.1 - 11.1.2.2 Input/Output

99

11.1.2.3. PRINC

<PRINC any>

("print charactersj acts exactly like PRINI. except that
(I) if its argument is a STRING or a CHARACTER, it suppresses the surrounding ·s or initial ! \
respectively; or.
(2) if its argument is an ATOM. it suppresses any \s or OSLIST trailers (chapter 15) which would
otherwise be necessary.

If PRINC's argument is a structure containing STRINGs. CHARACTERs. or ATOMs. the service mentioned
will be done for all of them. Ditto for the ATOM used to name the TYPE in -, notation-.

11.1.2.4. TERPRI

(TERPRI>

,terminate printing) outputs a carriage-return line-feed and then returns IFALSE ()J

11.1.2.5. CRLF

(CRLF)

(-carriage-return line-feed") outputs a carriage-return line-feed and then returns T.

11.1.2.6. FLATSIZE

<FLATSIZE any max:fix radix:fix>

does not actually cause any output to occur and does not take a CHANNEL argument. In$lead. it
compares max with the number of characters PRINl would take to print any. If max is Jess than the
number of characters needed (including the case where any is self-referencing), FLATSIZE returns
IFALSE (); otherwise. it returns the number of characters needed to PRINl any. radix (optional.
default ten) is used for converting any FIXes that occur.

This SUBR is especially useful in conjunction with (section 11.2.7) those elements of a CHANNEL
which specify the number of characters per output line and the current position on an output line.

11.1.2.3 - 11.1.2.6 Input/Output

100

11.2. CHANNEL (the TYPE)

1/0 channels are dynamically assigned in MOL, and are represented by an object of TYPE CHANNEL.
which is of PRIHTYPE VECTOR. The format of a CHANNEL will be explained later, in section 11.2.7.
First, how to generate and use them.

11.2.1. OPEN

(OPEN mods fils-spsc)

or

(OPEN mode namel name2 dev dir>

OPEN is a SUBR which creates and returns a CHANNEL All its arguments must be of TYPE STRING.
and aJl are optional. The preceding statement is false when the device is "INT" or "NET"; see
sections 11.9 and 11.11. If the attempted opening of an ITS or TENEX I/O channel fails, OPEN
returns IFALSE (reason:string file-spec:string status:fix), where the rsason and the status are supplied
by the operating system, and the file-spec is the name of the file that MDL was trying to open.

The first argument to OPEN tells the mode, as understood by ITS, in which the CHANNEL will be used,
for a typical device:

"READ"
"PRINT"
"READB"
"PRINTB"
"PRINTO"
"DISPLAY"

unit ASCII input (default)
unit ASCII output
block image input (not from a console)
block image output (not to a console)
block image update in place (only on liDS"", file must exist)
graphics

The above modes are significant only under ITS, and only for devices about which MDL has no
special knowledge or which it does not treat speciaUy. The programmer's choice of mode is usually
determined by which SUBRs will be used 011 the CHANNEL The foUowing table tells which SUBRs can
be used with which modes, where 0" indicates an allowed use:

11.2 • 11.2.1 Input/Output

101

"READU "PRINP "READSII "PRINTB" "DISPLAYu mode I SUBRs
"PRINTO"

OK OK READ READCHR NEXTCHR READSTRING FILECOPY
FILE-LENGTH LOAD

OK PRINT PRINl PRINC I"AGE TERPRI FILECOPY

OK
OK
OK
OK

OK
OK

OK

OK
OK

OK
OK
OK

PRINTSTRING BUFOUT RENAME
READS GC-READ
PRINTS GC-OUMP
ACCESS
RESET
ECHOPAIR
TTYECHO TYI

OK DISPLAY ERASE
• PRINTing (or PRINling) an RSUSR (chapter 19) on a "PRINTS" or "PRINTO" CHANNEL has special
effects.

The next one to four arguments to OPEN specify the file involved. If only one STRING is used, it
can contain the entire specification, according to standard operating-system syntax. Otherwise, the
string{s) are interpreted as follows:

nameJ is the first file name, that part to the left of the space (ITS) or period (TENEX). Default:
(VALUE NMl>, if any, otherwise "INPUT".

name2 is the second file name, that part to the right of the space (ITS) or period (TEN EX). Default:
(VALUE NMZ>. if any. otherwise ">" (ITS) or "MOL" and highest version number (TENEX).

dev is the device name. Default: <VALUE OEV>, if any. otherwise IIOSK".

dir is the disk-directory name. Default: <VALUE SNM>. if any. otherwise the "working-directory"
name as defined by the operating system.

Examples:

(OPEN ·PRINP "TPL:II> opens a conversion-output CHANNEL to the TPL device under ITS.

(OPEN ·PRINT" IIDUMMY u UNAMES" "TPL") does the same.

(OPEN IIPRINP "TPL"> opens a CHANNEL to the file DSK :TPL > (ITS) or DSK :TPL.HOL (TEN EX).

(OPEN IIREAD" UFOO" ")11 "DSKu "GUESP) opens a conversion-input CHANNEL to that file.

(OPEN "READII "GUEST.FOO") does the same under ITS.

11.2.1 Input/Output

102

11.2.2. OPEN-NR

OPEN-NR is the same as OPEN, except that the date of last reference of the opened file is not changed.

11.2.5. CHANNEL (the SUBR)

CHANNEL is called exactly like OPEN, but it always returns an unopened CHANNEL. which can later be
opened by RESET (below) just as if it had once been open.

11.2.4. CLOSE

(CLOSE channel)

closes channel and returns its argument, with its "state" Changed to ·closed". If channel is for output.
all buffered output is written out first. No harm is done if channel is already CLOSEd.

11.2.5. CHAN LIST

(CHANLIST)

returns a LIST whose elements are all the currently open CHANNEls. The first two elements are
usually .INCHAN and ,OUTCHAN (see below). A CHANNEL not referenced by anything except
(CHANLIST> will be CLOSEd during garbage collection.

11.2.6. INCHAN and OUTCHAN

The default channel for input SUBRs is the local value of the ATOM INCHAN. The default channel for
output SUBRs is the local value of the ATOM OUTCHAN.

You can direct 1/0 to a CHANNEL by SETting INCHAN or OUTCHAN (remembering their old values
somewhere), or by giving the SUBR you wish to use an argument of TYPE CHANNEL (These actually
have the same effect. because READ binds INCHAN to an explicit argument, and PRINT binds OUTCHAN
similarly. Thus the CHANNEL being used is available for READ macros (section 17.1) and PRINTTYPEs
(section 6.4.4).)

By the way. a good trick for playing with INCHAN and OUTCHAN within a function is to use the ATOMs
INCHAN and OUTCHAN as "AUX" variables, re.blndlng their local values to the CHANNEL you want.
When you leave, of course, the old LVALs are restored (which is the whole point). The ATOMs must be
declared SPECIAL (chapter 14) for this trick to compile correctly.

11.2.2 • 11.2.6 Input/Output

103

INCHAN and OUTCHAN also have global values. initia11y the CHANNEls directed at the console running
MDL. Initially, INCHAN's and OUTCHAN's local and global values are the same.

11.2.7. Contents of CHANNEls

The contents of an object of TYPE CHANNEL are accessed by the I/O SUBRs each time such a SUBR is
used. If you change the contents of a CHANNEL (for example. with pun. the next use of that
CHANNEL will be changed appropriately. Some elements of CHANNEls. however. should be played with
seldom. if ever. and only at your peril. These are marked below with an * (asterisk). Caveat user.

There follows a table of the contents of a CHANNEL. the TYPE of each element. and an interpretation.
The format used is the following:

element-number: type interpretation

11.2.7.1. Output CHANNEls

The contents of a CHANNEL used for output are as follows:

·1: LIST
• 0: varies

transcript channel(s) (see below)
device.dependent information

• 1: FIX
.2: STRING

channel number (ITS) or jfn (TENEX), 0 for display or internal or closed
mode

.. 3: STRING

.4: STRING
• 5: STRING
• G: STRING
.7: STRING
.8: STRING
.9: STRING
$10: STRING
$II: FIX
.12: FIX
13: FIX
14: FIX
15: FIX
16: FIX
17: FIX
18: FIX
19: FIX

first file name argument
second file name argument
device name argument
directory name argument
real first file name
real second file name
real device name
real directory name
various status bits
PDP·10 instruction used to do one I/O operation
number of characters per line of output
current character position on a line
number of lines per page
current line number on a page
access pointer for file-oriented devices
radix for FIX conversion
information needed when outputting to the display

N.B.: The elements of a CHANNEL below number 1 are ulually invisible but are obtainable via <NTH
(TOP channel> fix>. for some appropriate fix.

11.2.6 - 11.2.7.1 Input/Output

104

The transcript-channels slot has this meaning: if this slot contains a LIST of CHANNEls. then
anything input or output on the original CHANNEL is output on these CHANNEls. Caution: do 110t use
a CHANNEL as its own transcript channel; you probably won't Jive to tell about it.

11.2.7.2. Input CHANNEls

The contents of the elements up to number 12 of a CHANNEL used for input are the same as that for
output. The remaining elements are as fonows «same) indicates that the use is the same as that for
output):

13: varies
.14: FIX
.15: FIX
16: LIST
17: FIX
18: FIX
19: STRING

Object evaluated when end of file is reached
one "look·ahead" character. used by READ
PDp·I0 instruction executed waiting for input
queue of buffers for input from a console
access pointer for file-oriented devices (same)
radix for FIX conversion (same)
buffer for input

11.3. End-of-File "Routine"

As mentioned above, an explicit CHANNEL is the first optional argument of an SUBRs used for
conversion 1/0. The second optional argument for conversion.input SUBRs is an "end·of·file
routine· - that is, something for the input SUBR to EVAL and return. if it reaches the end of the file
it is reading. A typical end·of·file argument is a QUOTEd FORM which applies a function of yours.
The default value of this argument is a call to ERROR. Note: the CHANNEL has been CLOSEd by the
time this argument is evaluated.

Example: the following FUNCTION counts the occurrences of a character in a file. according to its
arguments. The file names. device, and directory are optional, with the usual defaults.

<DEFINE COUNT-CHAR
(CHAR "TUPLE" FILE "AUX" (CNT 0) (CHN (OPEN "READ" ! .FILE}»

<COND (.CHN ;"If CHN is FALSE, bad OPEN: return the FALSE
so result can be tested by another FUNCTION."

(REPEAT ()
<AND (==7 .CHAR (READCHR .CHN '(RETURN}})

<SET CNT (+ 1 .CNT»)}
;"Until EOF, keep reading and testing a character at a time."

• CNT ; "Then return the count. ")>>

11.2.7.1 - 11.3 Input/Output

105

11.4. Imaged 110

11.4.1. Input

11.4.1.1. READS

(READS buffer:uvector-or-storage channel eof:any>

The channel must be open in "READS" mode. READS will read as many 36·bit binary words as
necessary to fill the buffer (whose UTYPE must be of PRIMTYPE WORD), unless it hits the end of file.
READS returns the number of words actually read, as a FIXed·point number. This will normally be
the length of the buffer, unless the end of file was read, in which case it will be less, and only the
beginning of buffer will have been filled (SUBSTRUC may help). An attempt to READS again, after
buffer is not filled, will evaluate the end·of·file routine eof, which is optional, default a call to
ERROR.

11.4.1.2. READSTRING

(READSTRING buffer:string channel stop:fix-or-string eof>

is the STRING analog to READB, where buffer and eof are as in READB, and channel is any input
CHANNEL (default .INCHAN). stop tells when to stop inputting: if a FIX, read this many CHARACTERs
(default: fill up buffer); if a STRING, stop reading if any CHARACTER in this STRING is read (don't
include this CHARACTER in final STRING).

11.4.2. Output

11.4.2.1. PRINTS

(PRINTB buffer:uvector-or-storage channel>

This call writes the entire contents of the buffer into the specified channel open in -PRINTS- or
"PRINTO" mode. It returns buffer.

11.4.2.2. PRINTSTRING

(PRINTSTRING buffer:string channel count:fix>

is analogous to READSTRING. It outputs buffer on channel, either the whole thing or the first count
characters. and returns the number of characters output.

11.4 • 11.4.2.2 Input/Output

106

11.4.2.3. IMAGE

< IMAGE fix channel>

is a rather special-purpose SUBR. When any conversion-output routine outputs an ASCII control
character (with special exceptions like carriage-returns. line-feeds. etc.). it actually outputs two
characters: A (circumflex). fonowed by the upper-case character which has been control-shifted.
IMAGE. on the other hand. always outputs the real thing: that ASCII character whose ASCII 7-bit
code is fix. It is guaranteed not to give any gratuitous line-feeds or such. channel is optional. with
default .OUTCHAN, and its slots for current character position (number 14) and current line number
(16) are not updated. IMAGE returns fix.

11.5. Dumped I{O

11.5.1. Output: GC-DUMP

(GC-DUMP any printb:channel-or-false>

dumps any on printb in a clever format so that GC-READ (below) can reproduce any exactly. including
sharing. any cannot live on the control stack. nor can it be of PRIMTYPE PROCESS or LOCO or ASOC
(which see). any is returned as a value.

If printb is a CHANNEL, it must be open in "PRINTS" or "PRINTO· mode. If printb is a FALSE. GC
DUMP instead returns a UVECTOR (of UTYPE PRIMTYPE WORD) that contains what it would have output
on a CHANNEL This UVECTOR can be PRINTBed anywhere you desire. but. if it is changed in any way.
GC-READ will not be able to input it. Probably the only reason to get it is to check its length before
output.

Except for the miniature garbage collection required. GC-DUMP is about twice as fast as PRINT. but
the amount of external storage used is two or three times as much.

11.5.2. Input: GC-READ

<GC-REAO readb:channel eof:any>

returns one object from the channel. which must be open in "READB" mode. The file must have been
produced by GC-DUMP. eof is optional. GC-READ is about ten times faster than READ.

11.4.2.3 - 11.5.2 Input/Output

107

11.6. SAVE Files

The entire state of MDL can be saved away in a file for later restoration: this is done with the SUBRs
SAVE and RESTORE. This is a very different form of I/O from any mentioned up to now; the file
used contains an actual image of your MDL address space and is not. in general. "legible" to other
MDL routines. RESTOREing a SAVE file is much faster than re-READing the objects it contains.

Since a SAVE file does not contain all extant MDL objects. only the impure and PURIFYed (section
22.9.2) ones, a change to the interpreter has the result of making all previous SAVE files unusable.
To prevent errors from arising from this, the interpreter has a version number. which is
incremented whenever changes are installed. The current version number is printed out on initially
starting up the program and is available as the GVAL of the ATOM MUDDLE. This version number is
written out as the very first part of each SAVE file. If RESTORE attempts to re-Ioad a SAVE file
whose version number is not the same as the interpreter being used, an ERROR is produced. If
desired, the version number of a SAVE file can be obtained by doing a READ of that file. Only that
initial READ will work; the rest of the file is 110t ASCII.

11.6.1. SAVE

<SAVE file-spec:string gc?:false-or-any)

or

<SAVE name! name2 dev dir gc?:fa/se-or-any)

saves the entire state of your MDL away in the file specified by its arguments. and then returns
·SAVEO". All STRING arguments are optional. with defaults "MUDDLE", "SAVE-, "DSK", and <VALUE
SNH). get is optional and, if supplied and of TYPE FALSE, causes no garbage collection to occur
before SAVEing. (FSAVE is an alias for SAVE that may be seen in old programs.)

If ,SNH is the nulJ STRING (" "), it will not be a part of the SAVE file. that is, RESTORE will not
change • SNH. This mechanism is handy for "public" SAVE files, which should not point the user at a
particular disk directory. Under ITS. the file is actually written with the name _MUDS_ > and
renamed to the argument(s) only when complete. to prevent losing a previous SAVE file if a crash
occurs. Under TENEX, version numbers provide the same safety.

Example:

11.6 • 11.6.1 Input/Output

108

(DEFINE SAVE-IT ("OPTIONAL"

(SETUP>

(FILE '("PUBLIC" "SAVE" "DSK" "GUEST"»
"AUX" (DIR ,SNM»

(SETG SNM 1111>
(COND «=7 "SAVEDH <SAVE I.FILE» j"See below."

(SETG SNM .DIR>
<CLEANUP>
"Saved.")

(T
(TERPRI>
(PRINC "Amazing program at your service.">
(TERPRI>
(START-RUNNING»»

11.6.2. RESTORE

(RESTORE file-spec>

or

(RESTORE namel name2 dev dir>

replaces the entire current state of your MDL with that SAVEd in the file specified. All arguments
are optional. with defaults as in SAVE.

RESTORE completely replaces the contents of the MDL. including the state of execution existing
when the SAVE was done and the state of al1 open I/O CHANNEls. If a file which was open when the
SAVE was done does not exist when the RESTORE is done. you will get a message to that effect.

A RESTORE!:!!!£! returns (unless it gets an error): it causes a SAVE done some time ago to return
again (this time with the value "RESTORED"). even if the SAVE was done in the midst of running a
program. In the latter case. the program will continue its execution upon RESTOREation.

11.7. Other I/O Functions

11.7.1. LOAD

(LOAD input:chsnnel oblist>

11.6.1 - 11.7.1 Input/Output

109

eventually returns "DONE". First, however, it READs and EVAls every MDL object in the file pointed
to by input, and then CLOSEs input. Any occurrences of rubout, A@, AD, AL, etc., in the file are
given no special meaning; they are simply ATOM constituents.

oblist ioS optional, used to specify a LIST of OBLISTs for the READ. Its default is .OBLIST (chapter
15).

11.7.2. FLOAD

(FLOAD fils-spec oblist>

or

(FLOAD namel name2 dsv dir oblist>

("file load") acts just like LOAD, except that it takes arguments (with defaults) like OPEN. OPENs the
CHANNEL itself for reading, and CLOSEs the CHANNEL when done. oblist is optional, as in LOAD. If the
OPEN fails. an ERROR occurs, giving the reason for failure.

11.7.3. SNAME

(SNAME string> ("system name", a hangover from ITS) is identical in effect to (SETG SNM string>.
that ii, it caules the default dir argument to aU SUBRI which want fUe specifications to become iu
argument, in the absence of a local value for SNM, and it returns its argument.

(SNAME> is the same in effect as <GVAL SNM>, that is, it returns the current default dir.

11.7.4. ACCESS

(ACCESS channel fix>

returns channel, after making the next character or binary word (depending on the mode of channel,
which should not be "PRINP) which wiIJ be input from or output to channel the (fix+l)st one from
the beginning of the file. channel must be open to a randomly accessible device ("DSK". "USR",
etc.). A fix of 0 positions channel at the beginning of the file.

11.7.5. FILE-LENGTH

(FILE-LENGTH input:channel)

11.7.1 • 11.7.5 Input/Output

110

returns a FIX, the length of the file open on input. This information is supplied by the operating
6ystem. and it may not be available, for example, with the IINET" device (section 11.11). If input's
mode is uREADu. the length is in characters (rounded up to a multiple of five); if "READS'" in binary
words. If ACCESS is applied to input and this length or more. then the next input operation will
detect the end of file.

11.7.6. FlLECOPV

(FILECOPV input:channel output:channel)

copies character, from input to output until the end of file on input (thus closing input) and returns
the number of characters copied. Both arguments are optional. with respective defaults • INCHAN
and .OUTCHAN. The operation is essentially a REAOSTRING - PRINTSTRING loop. Neither CHANNEL
need be freshly OPENed. and output need not be immediately CLOSEd. Restriction: internally a
<FILE-LENGTH input) is done. which must succeed; thus FILECOPY might lose if input is a IINET"
CHANNEL

11.7.7. RESET

(RESET channel)

returns channsl, after "resetting" it. Resetting a CHANNEL ia like OPENing it afresh, with only the file
name slots preserved. For an input CHANNEL. this means emptying all input buffers and. if it is a
CHANNEL to a file, doing an ACCESS to 0 on it. For an output CHANNEL. this means returning to the
beginning of the file - which implies, if the mode is not npRINTo n, destroying any output done to it
so far. If the opening fails (for example. if the mode slot of channel says input. and if the file
specified in its real·name slots does not exist). RESET (like OPEN) returns 'FALSE (reason:string file
spec:string status:fix).

11.7.8. BUFOUT

(BUFOUT output:channel)

causes all internal MDL buffers for output to be written out and returns its argument. This is
helpful if the operating system or MDL is flaky and you want to attempt to minimize your losses.
The output may be padded with up to four extra spaces, if outpufs mode is "PRINP.

11.7.9. RENAME

RENAME is for renaming and deleting files. It takes three kinds of arguments:
(a) two file names. in either single. or multi·STRING format. separated by the ATOM TO,

11.7.5 • 11.7.9 Input/Output

111

(b) one file name in either format. or
(c) a CHANNEL and a file name in either format (not under TEN EX).

Omitted file-name parts use the OPEN defaults. If the operation is successful, RENAME returns T.
otherwi$e 'FALSE (r •• son:strin, st.tus:fix).

In cue (a) the file specified by the first argument is renamed to the second argument. Defaults are
as for OPEN. For example:

(RENAME "FOO 3" TO "BAR") ;NRename FOO 3 to BAR)."

In cue (b) the single file name specifies a file to be deleted. For example:

(RENAME IIFOO FOO DSK:HARRY;") ;"Delete file FOC FOC from
HARRY's directory.1I

In case (c) the CHANNEL must be open in either "PRINT" or "PRINTB" mode, and a rename while open
for writing il attempted. The real-name slots in the CHANNEL are updated to reflect any successful
change.

11.S. Console CHANNEls

MDL behaves like the ITS version of the text editor Teco with respect to typing in carriage-return.
in that it automatically adds a line-feed. In order to type in a lone carriage-return, a carriage-return
followed by a rub out must be typed. Also PRINT, PRINI and PRINC do not automatically add a line
feed when a carriage-return is output. This enables overstriking on a console that lac'"
backspacing capability. It also means that what goes on a console and what goes in a file are more
likely to look the same.

Under ITS, MDL can start up without a console. give control of the console away to an inferior job
or get it back while running. Doing a RESET on either of the console channels causes MDL to find
out if it now has the consol~; if it does. the console is reopened and the current screen size and
device parameters are updated. If it doesn't have the console, an internal flag is set. causing output
to the console to be ignored and attempted input from the console to make the job go to sleep.

Under ITS. there are some peculiarities associated with pseudo-consoles (·STY" and "STn" devices).
If the CHANNEL given to READCHR is open in "READ" mode to a pseudo-console. and if no input i5
available. READCHR returns -1. TYPE FIX. If the CHANNEL given to READSTRING i5 open in "READ"
mode to a pseudo-console, reading also stops if and when no more characters are available. that is.
when READCHR would return -1.

11.7.9 - 11.8 Input/Output

112

11.S.1. ECHOPAIR

<ECHOPAIR console-in:channel console-out:channeJ)

returns its first argument. after making the two CHANNEls nknow about each other" 50 that rubout.
"'8. "'D aDd AL aD console-in will cause the appropriate output on console-out.

11.8.2. TTYECHO

<TTYECHO consoie-input:channel pred)

turns the echoing of typed characters on channel off or on. according to whether or not pred is of
TYPE FALSE. and returns channel. It is useful in conjunction with TYI (below) for a program that
wants to do character input and echoing in its own fashion.

11.8.3. TVI

< TVI console-input:channe/)

returns one CHARACTER from channel (optional, default. INCHAN) when it is typed. rather than after S
(ESC) is typed. a.s is the case with READCHR. The following example echos input characters as their
ASCII values, until a carriage-return is typed:

<REPEAT «FOO <TTYECHO .INCHAN (»»
(AND (•• 1 13 <PRINC <ASCII <TYI .INCHAN»»

<RETURN <TTYECHO .INCHAN T»»

11.9. Internal CHANNEls

If the device specified in an OPEN is "INT", a CHANNEL is created which does not refer to any I/O
device outside MDL. In this case, the mode must be RREAD" or "PRINP. and there is another
argument. which must be a function.

For a "READ" CHANNEL. the function must take no arguments. Whenever a CHARACTER is desired
from this CHANNEL. the function will be applied to no arguments and must return a CHARACTER.
This will occur once per call to READCHR using this CHANNEL. and several times per call to READ.
Under ITS. the function can signal that its Nend-of-file" has been reached by returning <CHTYPE
-777777000003* CHARACTER) (-I in left half. control-C in right). which is the standard ITS end-of
file signal. Under TEN EX. the function should return either that or <CHTYPE "'777777000032'"
CHARACTER> (-I and control-Z). the latter being the TENEX end-of-file signal.

11.S.1 - 11.9 Input/Output

113

For a "PRINT" CHANNEl, the function must take one argument. which will be a CHARACTER. It can
dispose of its argument in any way it pleases. The value returned by the function is ignored.

Example: (OPEN "PRINT" IIINT:II .FCN> opens an internal output CHANNEL with .FCN as its
character-gobbler.

lLl~ "DISPLAY" CHANNE~

"DISPLAY" CHANNE~ are used to display graphical information. of TYPE PICTURE. The
manipulation of useful PICTUREs is covered in ref S. The following two SUSRs are not available
under TEN EX.

11.10.1. DISPLAY

(DISPLAY display:channel picture>

displays picture on the device associated with channel. If picture is not given. the display on the
device is refreshed. which is useful only for display consoles.

lLIO.2. ERASE

(ERASE display:channel picture>

removes picture from the display on channel. If picture is not given, all PICTUREs displayed on
ch.nnel will be removed. leaving an empty display.

11.11. The "NET" Device: the ARPA Network

The "NET" device is different in many ways from conventional devices. Under ITS, it is the only
device besides "INT" that does not take all strings as its arguments to OPEN, and it must take an
additional optional argument to specify the byte size of the socket. The format of a call to open a
network socket is

(OPEN modll:strinl locsl-socl<lIt:fix foreiln-sOcl<et:fix IINET- forei,n-host:fix byte-size:fix)

where:

mod. 11 the mode of the desired CHANNEL Thl. mUlt be either IIREAD". "PRINT II, "READS" or
II PRINTS".

11.9 - 11.11 Input/Output

114

local-socKet is the local socket number. If it is -I, the operating system will generate a unique
local socket number. If it is not, under TENEX, the socket number is fork-relative.

foreign-socKet is the foreign socket number. If it is -I, this is an OPEN for "listening".

foreign-host is the foreign host number. If it is an OPEN for listening. this argument is ignored.

~

byte-size is the optional byte size. For II READ II or "PRINP this must be either 7 (default) or a.
For -READS- or -PRINTsa, it can be any integer from 1 to 36 (default).

Under TEN EX. OPEN can instead be given a STRING argument of the form -NET: .•• ". In this case
the local socket number can be directory-relative.

Like any other OPEN. either a CHANNEL or a FALSE is returned. Once open. a network CHANNEL can be
used like any other CHANNEL. except that FILE-LENGTH. ACCESS, RENAME. etc.. cannot be done. The
"argument" first-name, second-name. and directory-name slots in the CHANNEL are used for local
socket, foreign socket. and foreign host (as specified in the call to OPEN). respectively. The
corresponding "real" slots are used somewhat differently. If a channel is OPENed with Jocal socket
-1. the "real" first-name slot will contain the unique socket number generated by the operating
system. If a listening socket is OPENed, the foreign socket and host numbers of the answering host
are stored in the "real" second-name and directory-name slots of the CHANNEL when the Request For
Connection is received.

An interrupt (chapter 21) can be associated with a "NEP-device CHANNEL. so that a program will
know that the CHANNEL has or needs data, according to its mode.

There also exist several spedal-purpose SUBRs for the "NEP device. These are described next.

11.11.1. NETSTATE

(NETSTATE network:channe/)

returns a UVECTOR of three FIXes. The first is the state of the connection. the second is a code
specifying why a connection was closed, and the last is the number of bits available on the
conn~ction for input. The meaning of the state and close codes are installation-dependent and 50

are not included here.

11.11.2. NETACC

(NETACC network:channel>

accepts a connection to a socket that is open for listening and returns its argument. It will return a
FALSE if the connection is in the wrong state.

11.11 - 11.11.2 Input/Output

115

11.11.3. NETS

<NETS networ/{:channel>

returns its argument. after forcing any system-buffered network output to be sent. ITS normally
does this every half second anyway. TENEX does not do it unless and until NETS is caJled. NETS is
similar to BUFOUT for normal CHANNEls, except that even operating-system buffers are emptied !!2~ ...

11.11.3 Input/Output

116

Cha.pter 12. Looa.tives

There is in MDL a facility for obtaining and working directly with objects which roughly
correspond to "pointers" in assembly language or "lvals" in BePL or PAL. In MOL, these are
generically known as locatives (from "location") and are of several TYPEs, as mentioned below.
Locatives exist to provide efficient means for altering structures: direct replacement as opposed to
re-copying.

Locatives always refer to elements in structures. It is not possible to obtain a locative to something
(for example, an ATOM) which is not part of any structure. It is possible to obtain a locative to any
element in any structured object in MOL •• even to associations (chapter IS) and to the values of
ATOMs. structurings which are normally "hidden".

In the following. the object occupying the structured position to which you have obtained a loative
will be referred to as the object pointed to by the locative.

12.1. Obtaining Locatives

12.1.1. LLOC

<LLOC atom env>

returns a locative (TYPE LOCO, "locative to iDentifier") to the LVAL of atom in snv. If atom is not
bound in env, error. env is optional, with default being the current ENVIRONMENT. The locative
returned by LLOC is independent of future re.bindings of atom. That is, IN (see below) of that
locative will return the same thing even if atom is re·bound to something else; SETLOC (see below)
wiIJ affect only that particular binding of atom.

Since bindings are kept on a stack (tra la), any attempt to use a locative to an LVAL which has
become unbound will fetch up an error. (It breaks just like a TUPLE ••..) LEGAL 1 can, once again.
be used to see if a LOCO is valid. Caution: (SET A (LLOC A» creates a self·reference and can make
PRINT very unhappy.

12·12.1.1 Locatives

117

12.1.2. GLOC

<GLOC atom pred>

returns a locative (TYPE LOCO) to the GVAL of atom. If atom has no GVAL slot, an ERROR occurs, unless
prlJd (optional) is given and not FALSE. in which case a sJot is created (chapter 22). Caution: <SETG A
(GLOC A» creates a self·reference and can make PRINT very unhappy.

12.1.S. AT

<AT structured fix>

returns a locative to the firth element in structured. fix is optional, default 1. The exact TYPE of the
locative returned depends on the PRIMTYPE of structured: LOCL for LIST, LOCV for VECTOR, LOCU for
UVECTOR, LOCS for STRING, LOCB for BYTES, LOCT for TEMPLATE, and LOCA for TUPLE. If fix is
greater than <LENGTH structured> or less than I. error. The locative is unaffected by applications of
RES T. BACK. TOP, GROW, etc. to structured.

12.1.4. GETPL and GETL

<GETPL item:any indicator:any default:any)

returns a lo~tive (TYPE LOCAS) to the association of item under indicator. (See chapter 13 for
information about associations.) If no such association exists, GETPL returns EVAL of default. default
is optional. with default IFALSE ().

GETPL corresponds to GETPROP amongst the association machinery. There also exists GETl, which
corresponds to GET. returning either a LOCAS or a locative to the indicatorth element of a structured
item. GETL is JiJce AT if item is a structure and like GETPL if not.

12.2. LOCATIVE?

This SUBR is a predicate that tells whether or not its argument is a locative. It is cheaper than
<MEMQ <PRIMTYPE arg> I! [LOCO LOCL "' J>.

12.1.2 • 12.2 Locatives

118

12.3. Using Locatives

The following two SUBRs provide the means for working with locatives. They are independent of
the specific TYPE of the locative. The notation locative indicates anything which could be returned
by LLOe. GLOe. AT. GETPL or GETL

12.3.1. IN

< IN locative>

returns the object to which locative points. The only way you can get an error using IN is when
locative points to an LVAL which has become unbound from an ATOM. This is the same as the
problem in referencing TUPLEs as mentioned in section 9.2. and it can be avoided by first testing
< LEGAL? locd>.

Example:

<SET A 1>$
1
<IN (LLOe A»$
1

12.3.2. SETLOe

<SETLoe locative any>

returns any, after having made any the contents of that position in a structure pointed to by
locative. The structure itself is not otherwise disturbed. Error if IOCltivtl is to a non-LEGAL? LVAL or
if you try to put an object of the wrong TYPE into a PRIMTYPE UVECTOR, STRING, BYTES, or
TEMPLATE.

Example:

(SET A (1 Z 3»$
(l 2 3)
(SETLOC (AT .A Z> HI>$
HI
.A$
(l HI 3)

12.3 • 12.3.2 Locatives

119

12.4. Note on Locatives

You may have noticed that locatives are, strictly speaking. unnecessary; you can do everything
locatives allow by appropriate use of. fot example. SET, LVAL. PUT, NTH. etc. What locatives provide
is generality.

Basically. how you obtained a locative is irrelevant to SETLOC and IN; thus the same program can
play with GVALs. LVALs. objects in explicit structures, etc., without being bothered by what function
it should use to do so. This is particularly true with respect to locatives to LVALsj the fact that they
are independent of changes in binding can save a lot of fooling around with EVAL and
ENVIRONMENTs.

12.4 Locatives

120

Chapter 13. Assooiation (Properties)

There is an "associative" data storage and retrieval system embedded in MDL which allows the
construction of data structures with arbitrary selectors. It is used via the SUBRs described in this
chapter.

13.1. Associative Storage

13.1.1. PUTPROP

(PUTPROP item:any indicator:any valus:any>

("'put property' returns item, having associated value with item under the indicator indicator.

13.1.2. PUT

(PUT item:any indicator:any value:any>

is identical to PUTPROP, except that, if item is structured and indicator is of TYPE FIX, it does
(SETlOe (AT item indicator> valus>. In other words. an element with an integral selector is stored
in the structure itself. instead of in association space. PUT (like AT) will get an error if indicator is
out of range; PUTPROP will not.

13.1.3. Removing Associations

If PUTPROP is used without its value argument, it removes any association existing between its item
argument and i15 indicator argument. If an association did exist, using PUTPROP In this way returns
the value which was associated. If no association existed, it returns IFALSE ().

PUT, with arguments which refer to association, can be used in the same way.

13 • 13.l.3 Association (Properties)

121

If either item or indicator cease to exist (that is, no one was pointing to them, so they were garbage
collected), and no locatives to the association exist, then the association between them ceases to exist
(is garbage-coJ)ected).

13.2. Associative Retrieval

15.2.1. GETPROP

<GETPROP item:any indicator:any exp:any>

(-get property; returns the value associated with item under indicator, if any. If there is no such
association, GETPROP returns EVAL of exp (that is, eKp gets EVALed both at call time and later).

exp is optional. If not given, GETPROP returns IFALSE () if it cannot return a value.

Note: item and indicator in GETPROP must be the !!ill! MOL ob iects used to establish the association;
that is. they must be aa 7 to the objects used by PUTPROP or PUT.

13.2.2. GET

<GET item:any ";ndicator:any BKp:any>

is the inverse of PUT. using NTH or GETPROP depending on the test outlined in section lS.l.2. exp il
optional and used as in GETPROP.

13.3. Examples of Association

<SET l 1(1 2 34»S
(1 Z 3 4)
<PUT .L FOO NL is a l1st.">$
(1 Z 3 4)
<GET .L FOO)S
-L is a list. N

<PUTPROP .L 3 1![4]>$
(1 2 3 4)
<GETPROP .L 3)$
! [41]
<GET .l 3)S
3

I!U.3 -13.3 Association (Properties)

122

<SET N 0)$
o
<PUT .N .L "list on a zero")S
o
(GET .N 1(1 2 3 4»$
IFALSE ()

The last example failed because READ generated a new LIST - not the one which is L's LVAL
However.

<GET 0 • L>S
"list on a zero"

works because <==1 .N 0) is true.

To associate something with the Nth position in a structure, as opposed to its Nth element. associate
it with (REST structure N-l). as in the following:

<PUT (REST .L 2) PERCENT 0.3>$
(3 4)
<GET (2 .L> PERCENT)$
IFALSE ()
(GET (REST .L 2) PERCENT>$
0.30000000

Remember comments?

<SET N I![A B C ;"third element" 0 E]>$
![A BCD E!]
(GET (REST .N 2) COMMENT>$
"third element"

The I in the <SET N ••• > is to keep EVAL from generating a new UVECTOR ("Direct
Representation"). which would not have the comment on it (and which would be a needless
duplicate). A "top-level" comment -- one attached to the entire object returned by READ -- is PUT on
the CHANNEL in use, since there is no position in any structure for it. If no top.level comment
follows the object, READ removes the value «PUT channel COMMEND); so anybody that wants to see a
top-level comment must look for it after each READ.

If you need to have a structure with selectors in more than one dimension (for example, a sparse
matrix that does not deserve to be linearized), associations can be cascaded to achieve the desired
result. In effect an extra level of association maps two indicators into one. For example. to
associate value with item under indicator-l and indicator-2 simultaneously:

(PUTPROP indicator-l indicator-2 D

13.3 Association (Properties)

123

(PUTPROP item (GETPL indicator-l indicator-2) value)

13.4. Examining Associations

Associations (created by PUT and PUTPROP) are chained together in a doubly-linked list. internal to
MDL. The order of associations in the chain is their order of creation. newest first. There are
several SUBRs for examining the chain of associations. ASSOCIATIONS returns the first association
in the chain. or IFALSE () if there are none. NEXT takes an association as an argument and returns
the next association in the chain. or IfIFALSE () if there are no more. ITE"" INDICATOR and AVALUE
all take an association as an argument and return the item. indicator and value. respectively.
Associations print as:

#ASOC (item indicator value)

(sic: only one S). Example: the following gathers all the existing aNociations into a LIST.

(PROG «A (ASSOCIATIONS»)
(CONO «NOT .A) Ie»~

(T (.A I(MAPF .LIST
(FUNCTION () (COND «SET A (NEXT .A» .A)

(T (MAPSTOP»»»»)

13.3 -13.4 Association (Properties)

124

Ohapter 14. Data-type Deolaratlons

In MDL. it i. p05lible to declare the permiuibJe range of "tYPei" and/or 5tructures that an ATOM's
values or a function's arguments or value may have. This is done using a special TVPE, the DECL
rdeclaration·~ A OECL is of PRIMTYPE LIST but has a complicated internal structure. OECLs are
used by the interpreter to find TYPE errors in function calling and by the compiler to generate more
efficient code.

There are two kinds of DECLs. The first kind of OECL is the most common. It is called the A TOM
DECL and is used most commonly to specify the type/structure of the LVALs of the ATOMs in the
argument LIST of a FUNCTION or aux LIST of a PROG or REPEAT. This OECL has the form:

IDECL (atoms:list Pattern •••)

where the pairing of a LIST of ATOMs and a "Pattern" can be repeated indefinitely. This declares the
ATOMs in a list to be of the type/structure specified in the fonowing Pattern. The special A TOM
VALUE. if it appears, decJares the result of a FUNCTION call or PROG or REPEAT evaluation to satisfy
the Pattern specified. An ATOM DECL is useful in only one place: immediately following the
argument LIST of a FUNCTION, PROG or REPEAT. It normally includes ATOHs in the argument LIST
and ATOMs whose LVALs are otherwise used in the Function body.

The second kind of OECL is rarely seen by the casual MDL user. except in appendix 2. It is caJJed
the RSUBR OECL It is used to specify the type/structure of the arguments and result of an RSUBR or
RSUBR-ENTRY (chapter 19). It is of the fonowing form:

IOECL ("VALUE" Pattern Pattern •••)

where the STRING "VALUE" precedes the specification of the type/structure of the value of the ca11 to
the RSUBR, and the remaining Patterns specify the arguments to the RSUBR in order. The full
specification of the RSUBR OECL will be given in section 14.8. The RSUBR OECL is useful in only
one place: as an element of an RSUBR or RSUBR-ENTRY.

14 Data-type DecJarations

125

14.1. Patterns

The simplest pOS5ible Pattern is to $11 that a vaJue i5 exactJy $orne other object. by giving that
obJect.OUOTEd. For example, to declare that a variable 1. a particular ATOM:

IDECL e eX) IT)

declares that .X is always the ATOM T. When variables are DECLed al "being" lome other object in
this way. the test used is -? and not ... ? The distinction is usuaJJy not important. as ATOMs. which
are most commonly used in this construction. are u1 to each other if =1 anyway.

It is more common to want to specify that a value must be of a given TYPE. This is done with the
simplest non-specific Pattern. a TYPE name. For example.

IDECL (eX) FIX (Y) FLOAT)

declares. X to be of TYPE FIX. and. Y of TYPE FLOAT. In addition to the names of all of the built-in
and created TYPE6. such as FIX, FLOAT and LIST, a few "compound" type namel are allowed:

ANY allows any TYPE.

STRUCTURED allows any structured TYPE, such as LIST, VECTOR, FALSE, CHANNEL. etc.
(appendix 3).

LOCATIVE allows any locative TYPE. such as are returned by LLOC, GLOC, AT. and so on (chapter
12).

APPLICABLE allows any applicable TYPE. such as FUNCTION, SUBR, FIX (I). etc. (appendix 3).

Any other ATOM can be used to stand for a more complex construct. if an association is
established on that ATOM and the ATOM OECL A common example i5 to <PUT NUMBER OECL
I <OR FIX FLOAT» (see below). so that NUMBER can be used as a "compound type name".

The single TYPE name can be generalized slightly. allowing anything of a given PRIHTYPE. using the
foJlowing construction:

'OECL «X) <PRIMTYPE WORD> (Y) <PRIMTYPE LIST»

This construction consists of a two-element FORM, where the first element is the ATOM PRIMTYPE. and
the second the name of a primitive type.

The next step is to specify the elements of a structure. This is done in the simplest way as follows:

< structured:type Pattern Pattern .•• >

14.1 Data-type Declarations

126

where there is a one-to-one correspondence between the P,tterns and the elements of the structure.
For example:

lOECL «X) <VECTOR FIX FLOAT»

declares • X to be a VECTOR having at least two elements. the first of which is a FIX and the second a
FLOAT. It is often convenient to allow additional elements, so that only the elements being used in
the local neighborhood of the DECL need to be declared. TQ disallow additional elements, a SEGMENT
is used instead of a FORM (the "excl-ed" brackets make it loo~ more emphatic). For example:

IDECL «X) !(VECTOR FIX FLOAT»

declares • X to be a VECTOR having exactly two elements, the first of which is a FIX and the second a
FLOAT. Note that the Patterns given for elements can be any legal Pattern:

IDECL «X) <VECTOR <VECTOR FIX FLOAT» (V) «PRIMTYPE LIST> LIST»

declares • X to be a VECTOR containing another VECTOR of at least two elements, and • Y to be of
PRIMTYPE LIST. containing a LIST. In the case of a BYTES, the individual elemenu cannot be
declared (they must be FIXes anyway), only the size and number of the bytes:

IDECL «B) <BYTES 7 3»

declares .B to be a BYTES with BYTE-SIZE 7 and at least three elements.

It is possible to say that some number of elements of a structure satisfy a given Pattern (or
sequence of Patterns). This is called an "NTH construction".

[number:fix Pattern Pattern •••]

states that the sequence of P,tterns which is REST of the VECTOR is repeated the number of times
given. For example:

IDECL «X) <VECTOR [3 FIX] FLOAT> (Y) (LIST [3 FIX FLOAT]»

• X is declared to contain three FIXes and a FLOAT, perhaps followed by other elements. • Y is
declared to repeat the sequence FIX-FLOAT three times. Note that there may be more repetitions of
the seq uence in • Y (but not in . X): the OECL specifies only the first six elements.

For indefinite repetition, the same cOllstruction is used, but, instead of the number of repetitions of
the sequence of Patterns. the ATOM REST is given. This allows any number of repetitions, from ~ero
on up. For example:

IDECL «X) <VECTOR [REST FIX]> (Y) (LIST [3 FIX] [REST FIX]>

14.1 Data-type Declarations

127

A "REST construction" can contain any number of Patterns, just like an NTH construction:

IDECL «X) <VECTOR [REST FIX FLOAT LIST]»

declares that .X is a VECTOR wherein the sequence FIX-FLOAT-LIST repeats indefinitely. It does not
declare that (LENGTH .X> is an even multiple of three; the VECTOR can end at any point.

A variation on REST is OPT (or OPTIONAL), which is similar to REST except that the construction is
scanned once at most instead of indefinitely, and further undeclared elemenu can follow. For
example:

IDECL (eX) <VECTOR [OPT FIX]»

declares that .X is a VECTOR which is empty or whose first element is a FIX. Only a REST
construction can follow an "OPT construction".

Note that the REST construction must always be the last element of the structure declaration. as it
gives a Pattern for the rest of the structure. Thus, the REST construction is different from all others
in that it has an unlimited range. No matter how many times the Pattern it gives is RESTed off of
the structure. the remainder of the structure still has that Pattern.

This exhausts the possible single Patterns that can be given in a declaration. However, there is also
a compound Pattern defined. It allows specification of several possible Patterns for one value:

(OR Pattern Pattern >

Any non-compound Pattern can be included as one of the elements of the compound Pattern.
Finally. compound Patterns can be used as Patterns for elements of structures, and so on.

IDECL (eX) <OR FIX FLOAT>
(Y) <OR FIX <UVECTOR [REST <OR FIX FLOAT>]»)

The OR construction can be extended to any level of ridiculousness, but the higher the level of
complexity and compoundedness the less likely the compiler will find the DECL useful.

At the highest level, any Pattern at top level in an ATOM DECL can be enclosed in the construction

(speciaJity:atom Pattern >

which expJicitly declares the speciality of the ATOM(s) in the preceding LIST. speciality can be either
SPECIAL or UNSPECIAL. Speciality is important only when the program is to be compiled. The word
comes from the control stack. Which is called "special" in Lisp because the garbage collector finds
objects on it and modifies their internal pointers when storage is compacted. (An internal stack is
used within the interpreter and is not accessible to programs - section 22.1.) In an interpreted

14.1 Data-type Declarations

128

program all local value. are initially SPECIAL. because all bindings are put on the control stack (but
see SPECIAL-MODE below). When the program is compiled, only values declared SPECIAL (which may
or may not be the default) remain in bindings on the control stack. All others are taken care of
simply by storing objects on the control stack: the ATOMs involved are not needed and are not
created on loading. So, a program that SETs an ATOM's local value for another program to pick up
must declare that ATOM to be SPECIAL If it doesn't, the ATOM's binding will go away during
compiling, and the program that needs to access the ATOH will get a no-value error or access an
erroneous binding. Usually only ATOMs which have the opposite speciality from that of the current
SPECIAL-HaDE are explicitly declared. The usual SPECIAL-MODE is UNSPECIAL. so typically only
SPECIAL declarations use this construction:

lOECL «X) <SPECIAL <VECTOR FIX FIX»)

explicitly declares X to be SPECIAL

14.2. Examples

IDECL «Q) <OR VECTOR CHANNEL»

declares .0 to be either a VECTOR or a CHANNEL

IDECl «P Q R S) <PRIMTYPE LIST»

declares .P, .Q •• R. and .S all to be of PRIMTYPE LIST.

IDECL «F) <FORM [3 ANY]»

declares • F to be a FORM whose length is at least three, containing objects of any old TYPE.

IDECl «lL) «PRIMTYPE LIST> [4 <LIST [REST FIX]>]»

declares • LL to be of PRIMTYPE LIST, and to have at least four elements. each of which are LISTs of
unspecified length (possibly empty) containing FIXes.

IDECL «VV) <VECTOR FIX ATOM CHARACTER»

declares. VV to be a VECTOR with at least three elements. Those elements are, in order, of TYPE FIX,
A TOM. and CHARACTER.

IDECL «LH) <LIST ATOM [REST FLOAT]»

declares • LH to be a LIST whose first element is an ATOM and the rest of whose elements are FLOATs.
It also says that • LH is at least one element long.

14.1 - 14.2 Data-type Declarations

129

#DECl «FOO) <lIST [REST 'T FIX]»

declares • FOO to be a LIST whose odd'positioned elements are the ATOM T and whose even.positioned
elements are FIXes.

<HAPR <>
<FUNCTION (X)

IDECl «X) <VECTOR [1 FIX]»
<PUT .X 1 0»

.FOO>

declares • X to be a VECTOR containing at least one FIX. The more restrictive [REST FIX] would take
excessive checking time by the interpreter. because the REST of the VECTOR would be checked on
each iteration of the MAPR. In this case both DECLs are equally powerful. because checking the first
element of all the RESTs of a structure eventually checks all the elements. Also, since the FUNCTION
refers only to the first element of X, this is as much declaration as the compiler can effectively use.
(If this VECTOR always contains only FIXes. it should be a UVECTOR instead. for space efficiency.
Then a [REST FIX] DECL would make the interpreter check only the UTYPE. If the FIXes cover a
small non-negative range, then a BYTES might be even better, with a DECl of <BYTES n 0>.)

<DEFINE FACT (N)
IDECl «N) <UNSPECIAL FIX»
<COND «01 .N> 1) (ELSE <* .N <FACT <- .N 1»»»

declares • N to be of TYPE FIX and UNSPECIAL This speciality declaration ensures that, independent
of SPECIAl-HOOE during compiling, .N gets compiled into a fast control-stack access.

<PROG eel (0»
IDECl e(l VALUE) <UNSPECIAl <lIST [REST FIX]»

(N) <UNSPECIAl FIX»
<COND «01 .N> <RETURN .l»>
<SET l «+ .N <1 .L» l.l»
<SET N <- .N 1»>

The above declares land N to be UNSPECIAL. says that .N is a FIX, and says that. L. along with the
value returned. is a lIST of any length composed entirely of FIXes.

14.3. The DECl Syntax

This section gives quasi.BNF productions for the MDL DECl syntax. In the following table MDL
type-specifiers are distinguished in this w'y.

14.2 - 14.3 Data-type Declarations

130

decl :;=

declprs ::-

atlist

pattern

pat

unit

struc

elts

opt

· ... -
::a

: :=

.. -....

· .-· . ~
::=

· .-· .-

14.4. Good DECls

IOECL (declprs)

(atl1st) pattern deelprs deelprs

atom I atom at 1 i st

pat I <UNSPECIAL pat> I <SPECIAL pat>

unit I <OR unit •.. unit>

type I <PRIMTYPE type> J atom I lany
I ANY I STRUCTURED I LOCATIVE I APPLICABLE
I <strue elts> I «OR strue ••• strue> elts>
I !<struc elts> I 1«OR strue ••• strue) alts>
I <BYTES fix fix> I ! <BYTES fix fix>

structured-type I <PRIMTYPE structured-type>

pat I pat elts
I [fix pat ••• pat]
I [fix pat ••• pat] elts
I [opt pat pat] I [REST pat ••• pat]
I [opt pat ••. pat] [REST pat ••• pat]

OPT I OPTIONAL

There are ,orne rules of thumb concerning "good" OECLs. A "good" OECL i5 one that is minimally
offensive to the OECL-checldng mechanism and the compiler. but that gives the maximum amount
of information. It is simple to state what gives offense to the compiler and DECL-checking
mechanism: complexity. For example, a large compound DECL like:

IDECL «X) <OR FIX LIST UVECTOR FALSE»

is a OECL that the compiler will find totally useless. It might as well be ANY. The more involved the
OR, the less information the compiler will find useful in it. For example, if the function takes <OR
LIST VECTOR UVECTOR>. maybe you should really say STRUCTURED. Also. a very general DECL
indicates a very general program. which is not likely to be efficient when compiled (of course there
i.s a tradeoff here). Narrowing the DECl to one PRIMTYPE gives a great gain in compiled efficiency.
to one TYPE still more.

14.3 - 14.4 Data-type Declarations

131

Another situation to be avoided is the ordinary large DECL. even if it is perfectly straightforward.
If you have created a structure which has a very specific OECL and is used all over your code. it
might be better as a NEWTYPE (see below). The advantage of a NEW TYPE over a large explicit OECL is
twofold. First. the entire structure must be checked only when it is created. that is. CHTYPEd from
its PRIHTYPE. As a full OECL, it is checked completely on entering each function and on each
reassignment of ATOMs OECled to be it. Second, the amount of storage saved in the OECLs of
FUNCTIONs and so on is large. not to mention the effort of typing in and keeping up to date several
instances of the full OECL

14.5. Global OECLs

14.5.1. GOECL and MANIFEST

There are two ways to declare GVALs for the OECL-checking mechanism. These are through the
FSUBR GDECL ("global declaration") and the SUBR MANIFEST,

(GOECL atoms:list Pattern ..• >

GOECL allows the type/structure of global values to be declared in much the same way as local
values. Example:

(GDECL (X) FIX (Y) (LIST FIX»

declares. X to be a FIX, and. Y to be a LIST containing at least one FIX.

(MANIFEST atom atom , .• >

MANIFEST takes as arguments ATOMs whose GVALs are declared to be constantl, It is used most
commonly to indicate that certain ATOMs are the names of offsets in structures. For example:

(SETG X 1>
(MANIFEST X>

allows the compiler to confidently open-compile applications of X (getting the first element of a
structure). knowing that • X will not Change. Any sort of object can be a MANIFEST value; if it does
not get embedded in the compiled code. it is included in the RSUBR's "reference vector", for fast
access. However. as a general rule. structured objects should not be made MANIFEST: the SETG will
survive in the compiled version (for the use of new uncompiled programs). but uses of GVAL will
instead refer to a distinct copy of the object in each RSUBR that does a GVAL A structured object
should instead be GOECled.

An attempt to SETG a MANIFEST ATOM will cause an ERROR, unless either:

14.4 - 14.5.1 Data-type Declarations

132

(l) the ATOM was previously globally unassigned;
(2) the old value is ==? to the new value; or
(3) .REDEFINE is not FALSE.

14.5.2. MANIFEST? and UNMANIFEST

<MANIFEST? .tom>

returns T if .tom is MANIFEST, 'FALSE () otherwise.

<UNHANIFEST atom atom ... }

removes the MANIFEST of the global value of each of its arguments so that the value can be changed.

14.5.3. GBOUND?

<GBOUND1 atom>

("globally bound?·) returns T if ,tom has a global value slot {that is. if it hal ever been SETGed.
MANIFEST. GDECLed. or GLOCed (chapter 12) with a true second argument), 'FALSE () otherwise.

14.6. NEWTYPE (again)

NEWTYPE gives the programmer another way to OECL objects. The third (and optional) argument of
NEWTYPE is a QUOTEd Pattern. If given, it will be saved as the value of an association (chapter 13)
using the name of the NEWTYPE as the item and the ATOM OECL as the indicator. and it will be used to
check any object that is about to be CHTYPEd to the NEWTYP£. For example:

<NEWTYPE COMPLEX-NUMBER VECTOR '«PRIMTYPE VECTOR> FLOAT FLOAT}>

creates a new TYPE, with its first two elements declared to be FLOATs. If later someone types:

#COMPLEX -NUMBER [1. 0 2]

an ERROR wj)) result (the second element is not a FLOAn. The Pattern can be replaced by doing
another NEWTYPE for the same TYPE. or by putting a new value in the association. Further examples:

<NEWTYPE FOO LIST '«PRIMTYPE LIST) FIX FLOAT [REST ATOM]»

causes FOOs to contain a FIX and a FLOAT and any number of ATOMs.

14.5.1 • 14.6 Data.type Declarations

133

<NEWTYPE BAR LIST>

<SET A IBAR (IBAR () 1 1.2 GRITCH»

<NEWTYPE BAR LIST '«PRIMTYPE LIST> BAR [REST FIX FLOAT ATOM]»

This is an example of a recursively OECLed TYPE. Note that (I .A> does not satisfy the DEClo
because it is empty. but it was CHTYPEd before the OECL was associated with BAR. Now. even
<CHTYPE <1 .A> <TYPE (I .A»> will cause an error.

In each of these examples. the «PRIMTYPE •••) ••• > construction was used. in order to permit
CHTYPEing an object into itself. See what happens otherwise:

<NEWTYPE OOPS LIST '(LIST ATOM FLOAT»S
OOPS
<SET A <CHTYPE (E 2.71828) OOPS»S
lOOPS (E 2.71828)

Now <CHTYPE .A OOPS> wiJ1 cause an error. Unfortunately. you must

<CHTYPE <CHTYPE .A LIST> OOPS)S
lOOPS (E 2.71828)

14.7. Controlling DECL Checking

There are several SUBRs and FSUBRs in MDL that are used to control and interact with the DECL
checking mechanism.

14.7.1. DECL-CHECK

This entire complex checking mechanism can get in the way during debugging. As a result. the
most commonly used DECL-oriented SUBR is OECL-CHECK. It i, used to enable and disable the entire
DECL-checking mechanism.

<DECL-CHECK false-or-any>

If its single argument is non-FALSE. OECL checking is turned on; if it is FALSE. DECL checking is
turned off. The previous state is returned as a value. If no argument is given. DECL-CHECK returns
the current state. In an initial MDL OECL checking is on.

When DECL checking is on. the OECL of an ATOM is checked each time it is SET. the arguments and

14.6 - 14.7.1 Data-type Declarations

134

results of calls to FUNCTIONs. RSUBRs. and RSUBR-ENTRYs are checked. and the values returned by
PROG and REPEAT are checked. The same is done for SETGI and. In particular. attempts to change
MANIFEST global values. Attempts to CHTYPE an object to a NEWTYPE (if the NEWTYPE has the
optional DECL) are also checked. When DECL checking is off. none of these checks is performed.

14.7.2. SPECIAL-CHECK and SPECIAL-MODE

(SPECIAL-CHECK false-or-any)

controls whether or not SPECIAL checking is performed at run time by the interpreter. It is initially
off. Failure to declare an ATOM to be SPECIAL when it should be will produce buggy compiled code.

(SPECIAL-HODE speeiality:atom)

sets the default mode (for ATOMs not declared either way) and returns the previous default. or the
current default if no argument is given. The initial default is UNSPECIAL

14.7.S. GET-DECL and PUT-DECL

GET -DECL and PUT -DECL are used to examine and change the current DECL (of either the global or
the local value) of an ATOM.

(GET -DECL loed)

returns the DECL Pattern (if any. otherwise IFALSE ()) associated with the global or local value slot
of an ATOM. For example:

(PROG (X)
IDECL «X) (OR FIX FLOAT»)

(GET-DECL (LLOC X»
••• >

would return (OR FIX FLOAT) as the result of the application of GET-DECL. Note that because of
the use of LLOC (or GLOC. for globals) the ATOM being examined must be bound. otherwise you will
get an errorl This can be gotten around by testing first with BOUND? (or GBOUND? or by giving GLOC
a second argument which is not FALSE). '

If the slot being examined is the global slot and the value is MANIFEST. then the ATOM MANIFEST is
returned. If the value being examined is not DEC Led. IFALSE () 11 returned.

(PUT-DECL loed 'Pattern)

14.7.1 • 14.7.3 Data-type Declaration5

135

makes Pattern be the DECL for the value and returns loed. If (OECL-CHECK> is true. the current value
must satisfy the new Pattern. PUT-DECL is normally used in debugging, to change the OECL of an
object to correspond to changes in the program. Note that it is not legal to PUT -DECL a "Pattern" of
MANIFEST or IFALSE ().

14.7.4. DECL 7

(OECL? any 'Pattern>

specifically checks any against Pattern. For example:

(OECL7 '(I 2 3] '<VECTOR [REST FIX]»S
T
(OECL? '[I 2.0 3.0] '<VECTOR [REST FIX]»S
IFALSE ()

14.8. The RSUBR OECL

The RSUBR DECL is similar to the ATOM DECl., except that the declarations are of argument positions
and value rather than of specific ATOMs. Patterns can be preceded by STRINGs which further
describe the argument (or value).

The simplest RSUBR DECL is for an RSUBR or RSUBR-ENTRY (chapter 19) which has all of its
arguments evaluated and returns a DECLed value. For example:

IOECL (UVALUEu FIX FIX FLOAT)

declares that there are two arguments. a FIX and a FLOAT, and a result which is a FIX. While the
STRING ·VALUE" is not constrained to appear at the front of the DEClo it does appear there by
custom. It need not appear at aU. if the result is not to be declared. but (again by custom) in this
case it is usually declared ANY.

If any arguments are optional. the STRING "OPTIONAL" (or "OPT") is placed before the Pattern for
the first optional argument:

#OECL ("VALUE" FIX FIX "OPTIONAL" FLOAT)

If any of the arguments is not to be evaluated. it is preceded by the STRING AQUOTE":

#DECL ("VALUE" FIX "QUOTE" FORM)

declares one argument. which is not EVALed.

14.7.3 - 14.8 Data-type Declarations

136

If the arguments are to be evaluated and gathered into a TUPLE. the Pattern for it is preceded by the
STRING "TUPLE":

IDECL (-VALUE- FIX IITUPLE" <TUPLE [REST FIX]»

If the arguments are to be unevaluated and gathered into a LIST, or if the calling FORM is the only
"argument", the Pattern is preceded by the appropriate STRING:

IDECL (-VALUP FIX "CALL" <PRIMTYPE LIST»

In every case the special indicator STRING is followed by a Pattern which describes the argument.
even though it may sometimes produce fairly ludicrous results. since the Pattern for -TUPLE" always
must be a TUPLE; for IIARGS", a LISTj and for "CALL -, a FORM or SEGMENT.

14.8 Data-type Declarations

137

Chapter 15. Lexical Blocking

Lexical, or static, blocking is another means of preventing identifier collisions in MDL. (The first
was dynamic blocking -- binding and ENVIRONMENTs.) By using a subset of the MDL lexical
blocking facilities. the "block structure" of such languages as Algol. PL/I. SAIL. etc .• can be
simulated. should you wish to do so.

15.1. Basic Considerations

Since what foJJows appears to be rather complex. a short discussion of the basic problem lexical
blocking solves and MDL's basic solution will be given first.

ATOMs are identifiers. It is thus essential that whenever you type an ATOM. READ should respond with
the unique identifier you wish to designate. The problem is that it is unreasonable to expect the
PNAHEs of aJJ ATOMs to be unique. When you use an ATOM A in a program. do you mean the A you
typed two minutes ago, the A you used in another one of your programs. or the A used by Ioome
library program?

Dynamic blocking (pushdown of LVAls) solves many such problems. However. there are some which
it does not solve - such as state variables (whether impure or pure). Major problems with a system
having only dynamic blocking usually arise only when attempts are made to share large numbers of
significant programs among many people.

The solution used in MDL is basically as follows: READ must maintain at least one table of A TOMs to
guarantee any uniqueness. So. allow many such tables, and make it easy for the user to specify
which one is wanted. Such a table is an object of TYPE OBLIST ("object list"). All the complication
which follows arises out of a desire to provide a powerful, easily used method of working with
OBLISTs. with good defaults.

15 - 15.1 Lexical Blocking

us

15.2. OBLISTs

An OBLIST is of PRIMTYPE UVECTOR with UTYPE LIST; the LISTs hold ATOMs. (The ATOMs are ordered
by a hash coding on their PNAMEsj each LIST is a hashing bucket.) What foJJows is information
about OBLISTs as such.

15.2.1. OBLIST Names

Every normally constituted OBLIST has a name. The name of an OBLIST is an ATOM associated with
the OBLIST under the indicator OBLIST. Thus,

<GETPROP oblist OBLIST>

or

<GET oblist OBLIST)

returns the name of ob/ist.

Similarly. every name of an OBLIST is associated with its OBLIST. again under the indicator OBLIST.
so that

<GETPROP oblist-name:atom OBLIST>

or

<GET oblist-name:atom OBLIST>

returns the OBLIST whose name is oblist-name.

Since there is nothing special about the association of OBLISTs and their names. the name of an
OBLIST can be changed by use of PUTPROP, both on the OBLIST and its name. It is not wise to
change the OBLIST association without changing the name association. as you are likely to confuse
READ and PRINT terribly.

You can also use PUT or PUTPROP to remove the association between an OBLIST and its name
completely. If you want the OBLIST to go away (be garbage coJJected). and you want to keep its
name around. this must be done; otherwise the association wi)) force it to stay. even if there are no
other references to it. (If you have no references to either the name or the OBLIST (an ATOM -
including a TYPE name -- points to its OBLIST). both of them - and their association -- will go away
without your having to remove the association. of course.) It is not recommended that you remove
the name of an OBLIST without having it go away. since then ATOMs in that OBLIST wi)) PRINT the
same as if they were in 110 OBLIST •• which is defeating the purpose of this whole exercise.

15.2 - 15.2.1 Lexical Blocking

139

15.2.2. MOBLIST

<MOB LIST atom fix>

("make oblist") creates and returns a new OBLIST. containing no ATOMs. whose name is atom. unless
there already exists an OBLIST of that name. in which case it returns the existing OBLIST. fix is the
size of the OBLIST created - the number of hashing buckets. fix is optional (ignored if the OBLIST
already exists). with default 13. If specified, fix should be a prime number, since that allows the
hashing to work better.

15.2.S. OB L IS T?

<OBLIST? atom>

returns #FALSE () if IItom is not in any OBLIST. If atom is in an OBLIST. it returns that OBLIST.

15.3. READ and OBLISTs

15.3.1. Trailers

READ can be explicitly told to look up an ATOM in a particular OBLIST by giving the ATOM a trailer.
A trailer consists of the characters ! - (exclamation-point dash) following the ATOM. immediately
followed by the name of the OBLIST. For example.

A!-OB

specifies the unique ATOM of PNAME A which is in the OBLIST whose name is the ATOM OB.

Note that the name of the OBLIST must follow the ! - with ill!. separators (like space. tab. carriage
return. etc.). There is a default name (section 15.5) which types and is typed as ! -separator.

Trailers can be used recursively:

B! -A! -OB

specifies the unique ATOM of PNAME B which is in the OBLIST whose name is the unique ATOM of
PNAME A which is in the OBLIST whose name is OB. (Whewl) The recursion il terminated via the
defaults described below.

If an ATOM with a given PNAME is not found in the OBLIST specified by a trailer. a new ATOM with
that PNAME is created and inserted into that OBLIST.

15.2.2 • 15.8.1 Lexical Blocking

140

If an OBlIST whose name is given in a trailer does not exist, READ creates one, of length 13 buckets.

15.3.2. READ and Defaults

If trailer notation is not used (the "normal" case), and for an ATOM that terminates a trailer. READ
looks up the PNAHE of the ATOM in a LIST of OBlISTs, with default the lVAl of the ATOM OBLIST.
This lookup starts with (I .OBLIST> and continues until .OBlIST is exhausted. If the ATOM is not
found. READ usually inserts it into < 1 .OBlIST>. (It is possible to force READ to use a different
element of the lIST of OBlISTs for new insertions. If the ATOM DEFAULT is in that lIST. the OBLIST
following that ATOM will be used.)

15.4. PRINT and OBlISTs

\Vhen PRINT is given an ATOM to output. it outputs as little of the trailer as is necessary to specify
the ATOM uniquely to READ. That is, if the ATOM is the first ATOM of that PNAME which READ would
find in its normal lookup in the current .OBlIST, no trailer is output. Otherwise, 1- is output and
the name of the OBlIST is recursively PRINled.

Warning: there are obscure cases, which do not occur in normal practice, for which the PRINT trailer
recursion does not terminate. For instance, jf an ATOM must have a trailer printed, and the name of
the OBLIST is an ATOM in that very same OBLIST, death. Any similar circular case will also give
PRINT a hernia.

15.5. Initial State

In an initial MDL, .OBlIST contains two OBLISTs. < 1 .OBlIST> initially contains no ATOMs. and <2
.OBLIST) contains all the ATOMs whose GVAl.J are SUBRs or FSUBIU. as well as OBLIST, DEFAULT, T,
etc. It is difficult to lose track of the latter; the specific trailer ! -separator will always cause
reference to that OBLIST. In addition, the SUBR ROOT. which takes no arguments. always returns
that OBLIST.

The name of (ROOT) is ROOT; this ATOM is in <ROOT> and would cause infinite PRINT recursion were
it not for the use of ! -separator. The name of the initial <1 .OBLIST) is INITIAL (really
INITIAL! -).

The ATOM OBLIST also has a GVAL ,OBlIST is initially the same a5 .OBLIST; however. ,OBlIST is
not affected by the SUBRI used to manipulate the OBlIST structure. It i. instead used only when
errors occur.

15.3.1 • 15.5 Lexical Blocking

141

In the case of an ERROR, the current .OBLIST is checked to see if it is "reasonable" -- that is. contains
nothing of the wrong TYPE. (It is reasonable. but not standard. for .OBLIST to be a single OBUST
instead of a LIST of them.) If it is reasonable. that value stays current. Otherwise. OBLIST is SET to
,OBLIST. Note that changes made to the OBLISTs on ,OaLIST -- for example. new ATOMs added -
remain. If even ,OBLIST is unreasonable. OBLIST is SET and SETGed to its initial value. <ERRET>
(.section 16.4) always assumes that .OBLIST is unreasonable.

Three other OBLISTs exist in a virgin MOL; their names and purposes are as follows:

ERRORS! - contains ATOMs whose PNAMEs are used as error messages. It is returned by <ERRORS>.

INTERRUPTS! - is used by the interrupt system (section 21.2.1). It is returned by
(INTERRUPTS>.

HUDDLE 1- is used infrequently by the interpreter when loading compiled programs to fix up
references to locations within the interpreter.

The preJoading of compiled programs may create other OBLISTs in an initialized MOL (ref 4).

15.6. BLOCK and ENOBLOCK

These SUBRs are analogous to begin and end in Algol, etc., in the way they manipulate static
blocking (and in !!!!. other way).

(BLOCK list-of-oblists>

returns its argument after "pushing" the current LVAL of the ATOM OaLIST and making its argument
the current LVAL You usuany want (ROOT> to be an element of list-of-oblists. normally its last.

(ENOBLOCK>

"pops· the LVAL of the ATOM OBLIST and returns the resultant LIST of oaLISTs.

Note that this OBLIST "pushing" and "popping" is entirely independent of functional application.
binding. etc.

15.5·15.6 Lexical Blocking

142

15.7. SUBRs Associated with Lexical Blocking

15.7.1. READ (again)

(READ channsl tlof-routine lookup>

This is a fuller call to READ. lookup is an OBlIST or a LIST of them. used as stated in section 15.3 to
look up ATOMs and insert them in OBLISTa. If it is not specified •• OBlIST is used. See also sections
11.1.1.1. 11.S, and 17.1.S for other arguments.

15.7.2. PARSE and LPARSE (again)

(PARSE string rMiix:fix lookup>

as was previously mentioned. applies READ's algorithm to string and returns the first MDL object
resulting. This includes looking up prospective ATOMs on lookup. if given. or .OBlIST. lPARSE can
be calJed in the same way. See also sections 7.6.6.2 and 17.1.3 for other arguments.

15.7.S. LOOKUP

(lOOKUP string oblist>

returns the ATOM of PNAME string in the OBlIST ob/ist. if there is such an ATOM; otherwise. it returns
#FALSE (). If string would PARSE into an ATOM anyway. LOOKUP i. falter. although it looks in only
one OBLIST instead of a LIST of them.

15.7.4. ATOM

(ATOM string>

creates and returns a spanking new ATOM of PNAME string which is guaranteed not to be on !.!!.I.
OBLIST.

An ATOM which il not on any OBLIST is PRINTed with a trailer of ! -'FALSE ().

15.7.5. REMOVE

(REMOVE string oblist>

15.7 • 15.7.5 Lexical Blocldng

'143

removes the A TOM of PNAME string from oblist and returns that ATOM. If there is no such A TOM.
REMOVE returns IFAlSE (). Also.

<REMOVE atom>

removu atom from iu OBlIST. if it is on one. It returns .tom if it was on an OBlIST; otherwise it
returns IFALSE ().

15.7.6. INSERT

<INSERT string-or-atom oblist>

creates an ATOM of PNAME string. inserts it into oblist and returns it. If there is already an ATOM with
the same PNAME as atom in oblist. error. The standard way to avoid the error and always get your
atom is

<OR <LOOKUP string oblist> <INSERT string oblist»

As with REMOVE. INSERT can also take an ATOM as its first argument; this ATOM must not be on any
OBLIST - it must have been REMOVEd. or just created by ATOM -- else error. The OBlIST argument is
never optional. If you would like the new ATOM to live in the OBLIST that READ would have chosen.
you can <PARSE string> instead.

15.7.7. PNAME

<PNAME atom>

returns a STRING (newly created) which is atom's PNAME {"printed'name'. If trailers are not needed.
PNAME is much faster than UNPARSE on atom. (In fact UNPARSE has to go all the way through the
PRINT algorithm twice. the first time to see how long a STRING is needed.)

IS.7.S. SPNAME

SPNAME ("shared printed name") is identical to PNAME. except that the STRING it returns shares storage
with atom (appendix 1). which is more efficient if the STRING will not be modified. PUTting into
such a STRING will cause an ERROR.

15.7.5 - 15.7.8 Lexical Blocking

144

15.8. Example: Another Solution to the INC Problem

What fo))ows is an example of the way OBLISTs are "norma))y" used to provide "externaJly
available" ATOMs and "local" ATOMs which are not so readily available externany. Ref 8 describes a
systematic way to accomplish the same thing and more.

(HOBlIST INCO 1>
;"Create an OBLIST to hold your external symbols.
Its name is INCOI-INITIALI- ."

INCI-INCO
:"Put your external symbols into that OBlIST.
If you have many, just write them successively.n

<BLOCK «MOBLIST INCI!-INCO 1> <GET INCO OBLIST> <ROOT»>

<DEFINE

:"Create a local OBlIST, naming it INCII-INCO, and set up .OBlIST for
reading in your program. The OBlIST INCO is included in the BLOCK so
that as your external symbols are used, they will be found in the
right place. Note tha,t the ATOM INCO is not in any OBlIST of the
BLOCK: therefore, trailer notation of I-INCO will not work within the
current BLOCK-ENDBLOCK pair."

INC :"INC is found in the INCO OBLIST."
(A) :"A is not found and is therefore put into INC I by READ."
#DECL «VALUE A) <OR FIX FLOAT»
<SET .A <+ •• A 1>>> :"All other ATOMs are found in the ROOT. I'

<ENDBlOCK>

This example is rather trivial, but it contains a)) the issues, of which there are three.

The first idea is that you should create two OBLISTs, one to hold ATOMs which are to be known to
other users (INCO), and the other to hold internal ATOMs which are not normaUy of interest to others
(INC I). The case above has one ATOM in each category.

Second, INCO is expJicitJy used without trailers so that surrounding BLOCKs and ENDBlOCKs wiJ) have
an effect on it. Thus INCO wi)) be in the OBLIST desired by the user; INC will be in INCO, and the
user can access it by saying INC I -INCO; INCI wiJI also be in INCO, and can be accessed in the same
way; finany, A is rea))y A! -INCI! -INCO. The point of a)) this is to structure the nesting of OBlISTs.

Finally. if for some reason (like saving storage space) you wish to throw INCI away, you can fonow
the ENDBlOCK with

<REMOVE "INCI" <GET INCO OBLIST»

15.8 Lexical Blocking

145

and thus remove all references to it. The ability to do such pruning is one reason for structuring
OBLIST references.

Note that. even after removing INCl. you can -get A back- - that is. be able to type it in - by
.saying something of the form

<INSERT <1 <1 ,INC!-INCO» (1 .OBLIST»

thereby grabbing A out of the structure of INC and re-inserting it into an OBLIST. However. this
resurrects the name colJision caused by < INC 1- INCO A>.

15.8 Lexical 81oel(ing

146

Chapter 16. Errors, Frames, eto.

16.1. LISTEN

This SUBR takes any number of arguments. It first checks the LVALs of INCHAN, OUTCHAN. and
OBLIST for reasonability and console usability. In each case. if the value is unreasonable. the ATOM
is rebound to the corresponding GVAl., if reasonable, or to an invented reasonable value. LISTEN then
does <TTYECHO .INCHAN T) and (ECHOPAIR .INCHAN .OUTCHAN). Next. it PRINTs its arguments,
then PRINTs

LISTENING-AT-LEVEL I PROCESS p

where I is an integer (FIX) which is incremented each time LISTEN is called recursively, and p is an
integer identifying the PROCESS (chapter 20) in which the LISTEN was EVA Led. LISTEN then does
<APPLY <VALUE REP». if there is one, and if it is APPLICABLE. If not, it applies the SUBR REP
(without making a new FRAME - see below). This SUBR drops into an infinite READ-EVAL-PRINT loop,
which can be left via ERRET (section 16.4).

The standard LISTEN loop has two features for getting a handle on objects that you have typed in
and MDL has typed out. If the ATOM L-INS has a local value that is a LIST, LISTEN will keep
recent inputs (what READ returns) in it, most recent first. Similarly. if the ATOH L-OUTS has a local
value that is a LIST. LISTEN will keep recent outputs (what EVAL returns) in it, most recent first.
The keeping is done before the PRINting. so that AS does not defeat its purpose. The user can
decide how much to keep around by setting the length of each LIST. Even if L-OUTS is not used,
the atom LAST-OUT is always SET to the last object returned by EVAL in the standard LISTEN loop.
Example:

(SET L-INS (RECENTEST RECENTER RECENT)S
(RECENTEST RECENTER RECENT)
.L-INS$
(.L-INS RECENTEST RECENTER)
(SET FOO 69>$
69
<SET FIXIT (2 .L-INS»
<SET FOO 69)

;"grab the last input N$

16 - 16.1 Errors, Frames. etc.

.l-INS$
C.l-INS <SET FIXIT <2 .l-INS» <SET FOO 69»
<PUT .FIXIT 3 105>5
<SET FOO lOS}
<EVAl .FIXIDS
105
.l-INSS
C.l-INS <EVAL .FIXIT> <PUT .FIXIT 3 105»
• FOOS
105

16.2. ERROR

147

This SUBR is the same as LISTEN, except that (1) it generates an interrupt (chapter 21). if enabled.
and (2) it PRINTs -ERROR- before PRINTing its arguments.

When any SUBR or FSUBR detects an anomalous condition (for example, its arguments are of the
wrong TYPE), it calls ERROR with at least two arguments, including:

(1) an ATOM whose PNAME describes the problem, normally from the OBlIST ERRORS! - (appendix
4),
(2) the ATOM that names the SUBR or FSUBR. and
(S) any other information of interest,

and then returns whatever the call to ERROR returns. Exception: a few (for example DEFINE) will
take further action that depends on the value returned. This nonstandard action is specified in the
error message (first ERROR argument).

16.3. FRAME (the TYPE)

A FRAME is the object placed on a PROCESS's control stack (chapter 20) whenever a SUBR. FSUBR.
RSUBR, or RSUBR-ENTRY (chapter 19) is applied. (These objects are herein collectively called
"Subroutines".) It contains information describing what was appJied, plus a TUPLE whose elements
are the arguments to the Subroutine applied. If any of the Subroutine's arguments are to be
evaluated. they will have been by the time the FRAME is generated.

A FRAME is an anomalous TYPE in the following ways:

(1) It cannot be typed in. It can be generated only by an application.

(2) It does not type out in any standard format. but rather as IFRAME followed by the PNAME of
the Subroutine applied.

16.1 - 16.3 Errors. Frames. etc.

148

16.3.1. ARGS

<ARGS frame>

("arguments' returns the argument TUPLE of frame.

16.3.2. FUNCT

<FUNCT frame>

("function} returns the ATOM whose G/LVAL is being applied in frame.

16.3.3. FRAME (the SUBR)

<FRAME frame>

returns the FRAME stacked before frame or. if there is none. it will generate an ERROR. The lowest
FRAME that can be returned without error has a FUNCT of TOPLEVEL If called with no argumenu.
FRAME returns the topmost FRAME used in an application of ERROR or LISTEN. which was bound by
the interpreter to the ATOM LERR\ I-INTERRUPTS ("last error").

16.3.4. Examples

Say you have gotten an ERROR. You can now type at ERROR's LISTEN loop and get things EVALed.
For example.

<FUNCT <FRAME»S
ERROR
<FUNCT (FRAME (FRAME»>S
the-name-of-the-Subroutine-which-called-ERROR:atom
(ARGS (FRAME (FRAME»>S
the-arguments-to-the-Subroutine-which-called-£RROR:tup/e

16.4. ERRET

<ERRET any frame>

This SUBR ("error return") (1) causes the control stack to be stripped down to the level of frame. and
(2) then returns any. The net result is that the application which generated frame is forced to return

IS.S.1 - IS.4 Errors. Frames, etc.

149

any. Additional side effects that wouJd have happened in the absence of an error may not have
happened.

The second argument to ERRET is optionaJ, with defauJt the FRAME of the last invocation of ERROR or
LISTEN.

If ERRET is called with ~ arguments, it drops you all the way down to the bottom of the control
stack - before the leveJ.1 LISTEN loop •• and then caUs LISTEN. As always, LISTEN first ensures that
MDL is receptive.

Examples:

<* 3 <+ a 1»S

*ERROR·
ARG-WRONG-TYPE
+
LISTENING-AT-LEVEL 2 PROCESS 1
<ARGS <fRAME <fRAME»)S
[a 1]
<ERRET 5)S
15

;"This causes the + to return 5.·
j"finally returned by the ••

Note that when you are in an ERROR, the most recent set of bindings is still in effect. This means
that you can examine values of dummy variables while still in the error state. For example,

<DEFINE F (A "AUX" (B Na string"»
IDECL «VALUE) LIST (A) STRUCTURED (B) STRING)
(.B <REST .A 2» ;"Return this LIST." >S

f
<F '(1»S

·ERROR*
OUT-Of-BOUNDS
REST
LISTENING-AT-LEVEL 2 PROCESS 1
.AS
(1)

.BS
"a string"
<ERRET '(5» ; "Make the REST return (5)."S
("a string" (5»

16.4 Errors, Frames, etc.

150

16.5. RETRY

(RETRY frams)

causes the control stack to be stripped down just beyond frams, and then causes the Subroutine call
that generated frams to be done again. frame is optional, with default the FRAME of the last
invocation of ERROR or LISTEN. RETRY differs from AGAIN in that (1) it is not intended to be used in
programs; (2) it can retry any old frams (any Subroutine cam, whereas AGAIN requires an ACTIVATION
(PROG or REPEAT or AACP); and (S) if it retries the EVAL of a FORM that makes an ACTIVATION, it will
cause rebinding in the argument LIST, thus duplicating side effects.

16.6. UNWIND

UNWIND is an FSUBR that takes two arguments. usually FORMs. It EVALs the first one, and, if the EVAL
returns normally, the value of the EVAL caU is the value of UNWIND. If, however, during the EVAL a
non-local return attempts to return below the UNWIND FRAME in the control stack, the second
argument is EVA Led, its value is ignored. and the non-local return is completed. The second
argument is evaluated in the environment that was present when the caU to UNWIND was made. This
facility is useful for cleaning up data bases that are in inconsistent states and for closing
temporary CHANNEls that may be left around. FLOAD sets up an UNWIND to close its CHANNEL if the
user attempts to ERRET without finishing the FLOAD. Example:

(DEfINE CLEAN ACT (HAUX" (C (OPEN "READ" "A FILE-»)
IOECL «C) (OR CHANNEL FALSE) •••)

16.7. Control-G (,'G)

(CONO (.C
(UNWIND (PROG () ••• (CLOSE .C»

(CLOSE .C»)>>

Typing control-G ("G, (ASCII 7» at MDL causes it to act just as if an error had occurred in
whatever was currently being done. You can then examine the values of variables as above.
continue by applying ERRET to one argument (which is ignored), RETRY a FRAME lower on the control
stack, or flush everything by applying ERRET to no arguments.

16.5 - 16.7 Errors. Frames. etc.

151

16.8. Control-S (..... S)

Typing control-S (AS, <ASCII 19» at MDL causes it to stop what is happening and return to the
FRAME • LERR\ ! -INTERRUPTS, returning the ATOM T.

16.9. OVERFLOW

<OVERFLOW false-or-any>

There is one error that can be disabled: numeric overflow and underflow caused by the arithmetic
SUBRs (+ f - flit, I). The SUBR OVERFLOW takes one argument: if it is of TYPE FALSE. under/overflow
errors are disabled; otherwise they are enabled. The initial state is enabled. OVERFLOW returns T or
#FALSE (). reflecting the previous state. Calling it with no argument returns the current state.

16.8 - 16.9 Errors, Frames, etc.

152

Chapter 17. Maoro-operatlolUl

17.1. READ Macros

17.1.1. X and XX

The tokens X and XX are interpreted by READ in such a way a6 to give a ·macro· capability to MDL
similar to PL/I's.

Whenever READ encounters a single X - anywhere. at any depth of recursion -- it immediately.
without looking at the rat of the input. evaluates the object following the %. The result of that
evaluation is used by READ in place of the object following the X. That is. X means "don't really
READ this. use EVAL of it instead." X is often used in files in front of caUs to ASCII, BITS (which
see). etc.. although when the FUNCTION is compiled the compiler will do the evaluation if the
arguments are constant. Also seen is X. INCHAN. read as the CHANNEL in use during LOAD or FLOAD;
for example. (PUT X.INCHAN 18 8> causes succeeding FIXes to be read as octaL

Whenever READ encounters Xx. it likewise immediately evaluatu the object following the Xx.
However, it completely ignore. the result of that evaluation. Side effects of that evaluation remain,
of course.

Example:

(DEFINE SETUP () <SET A 0»$
SETUP
(DEFINE NXT () <SET A <+ .A 1»>$
NXT
[XX<SETUP> X<NXT> X<NXT> (XX<SETUP» X<NXT>]S
[1 Z () 1]

17 - 17.1.1 Macro-operations

153

17.1.2. LINK

(LINK exp:any string oblist>

creates an object of TYPE LINK, PRIMTYPE ATOM. A LINK looks vaguely like an ATOH; it has a PNAME
(the string argument}. resides in an OBLIST (the oblist argument) and has a ·value· (the exp
argument). A LINK has the strange property that, whenever it is encountered by READ (that is. its
PNAHE is read. just like an ATOM, possibly with OBLIST trailers), READ substitutes the LINK's "value"
for the LINK immediately. The effect of READing a LINK's PNAME is exactly the same as the effect of
reading its ·value".

The ob/ist argument is optional, with default <1 .OBLISD. LINK returns its first argument. The
LINK is created via INSERT. so an error results if there is already an ATOH or LINK in ob/ist with the
same PNAHE.

The primary use of LINKs is in interactive work with MDL; expressions which are commonly used,
but annoyingly long to type. can be "linked" to PNAMEs which are shorter. The canonical example is
the following:

(LINK '(ERRET> MAE" (ROOT»

which Jinks the ATOM of PNAME "E in the ROOT OBLIST to the expression <ERRET>.

17.13. Program-defined Macro-characters

During READing from an input CHANNEL or PARSEing a STRING, any character can be made to have a
special meaning. A character can cause an arbitrary routine to be invoked. which can then return
any number of elements to be put into the object being built by READ, PARSE, or LPARSE.
Translation of characters is also possible. This facility was designed for those persons who want to
use the MDL reader to do large parts of their input but have to modify its actions for some areas;
for example. one might want to treat left and right parentheses as tokens, rather than as delimiters
indicating a LIST.

17.1.S.1. READ (finally)

Associated with READ is an ATOM, READ-TABLE! -, whose local value, if any, must be a VECTOR of
elements. one for each character up to and including all characters to be treated specially. Each
element indicates, if not 0, the action to be taken upon READ's encounter with that character. A
similar VECTOR, the local value of PARSE-TABLE! -. if any. is used to find the action to take for
characters encountered when PARSE or LPARSE is applied to a STRING.

These tables can have up to 256 elements, one for each ASCII character and one for each possible
exclamation-point/ASCII-character pair. In MDL, the exclamation-point is used as a method of

17.1.2 • 17.1.3.1 Macro-operations

154

expanding the ASCII character set. and an exclamation-point/character pair is treated as one logical
character when not reading a STRING.

The element corresponding to a character is (NTH t6ble (+ 1 (ASCII char»>. The element
corresponding to an exclamation-point/ASCII.character pair is (NTH t.ble (+ 129 (ASCII char»).
The table can be shorter than 256 elements. in which case it is treated as if it were 256 long with aU
the elements above its actual length O.

An element of the tables must satisfy one of the following DECL Patterns:

• 0 indicates that no special action is to be taken when this character is encountered.

CHARACTER indicates that the encountered character is to be translated into the given CHARACTER
whenever it appears, except when as an object of TYPE CHARACTER, or in a STRING. or
immediately following a \.

FIX indicates that the character is to be given the same treatment as the character with the
ASCII value of the FIX, This allows you to cause other characters to be treated in the nme
way as A-Z for example. The same exceptions apply as described above.

<LIST FIX> indicates the same thing. except that the character does not by itself cause a break.
Therefore. if it occurs when reading an ATOM or number, it will be treated as part of that ATOM
or number.

APPLICABLE (to one argument) indicates that the character is to be a break character. Whenever
it is encountered. the reading of the current object is finished. and the corresponding element
of the table is APPLYed to the ASCII CHARACTER. (If READ is called during the application. the
end-of·file slot of the CHANNEL temporarily contains a special kind of ACTIVATION (TYPE
READA) so that end-of-file can be signalled properly to the original READ. Isn't that
wonderful?) The value returned is taken to be what was read, unless an object of TYPE SPLICE
is returned. If so, the elements of this object, which is of PRIMTYPE LIST, are spliced in at the
point where MDL is reading. An empty SPLICE anows one to return nothing. If a structured
object is not being built, and a SPLICE is returned, elements after the first will be ignored. A
SPLICE during reading is similar to a SEGMENT during evaluating, except that, in some sense, a
SPLICE says "expand me", whereas the structure containing a SEGMENT silYs "I will expand you".

<LIST APPLICABLE> indicates the same thing, except that the character does not by itself cause
a break. Therefore. if it occurs when reading an ATOM or number, it will be treated as part of
that ATOM or number.

READ takes an additional optional argument, which is what to use instead of the local value of the
ATOM READ-TABLE as the VECTOR of read-macro characters. If this argument is supplied. READ-TABLE
is rebound to it within the call to READ. READ takes from zero to four arguments. The fullest call to
READ is thus: '

17.1.3.1 Macro-opera tions

155

<READ channel eof-routine lookup read-table:vector>

The other arguments are explained in sections 11.1.1.1. 11.3. and 15.7.1.

ERROR and LISTEN rebind READ-TABLE to the GVAL of READ-TABLE. if any. else UNASSIGN it.

17.1.3.2. Examples

Examples of each of the different kinds of entries in macro tables:

<SET READ-TABLE <IVECTOR 256 0»$
(...]
<PUT .REAO-TABLE (+ 1 (ASCII I\a» !\A>

; "CHARACTER: translate a to A."S
(...]
abc$
Abc

<PUT .READ-TABLE <+ 1 (ASCII 1\%» <ASCII !\A»
;"FIX: make % just a normal ASCII character."S

(...]
A%BCS
A\"BC

<PUT .READ-TABLE (+ 1 (ASCII !\,» «ASCII 1\.»>
;U(LIST FIX>: make comma no longer a break

character, but still special if at a break.uS
(...]
A,BS
A\.B
: "That was an ATOM with PNAME A, B II
I.B$

,B
; "That was the FORM <GVAL B> II

<PUT .READ-TABLE (+ 1 <ASCII !\:»
IFUNCTION «X) <LIST COLON <READ»»

;"APPLICABLE: make a new thing like (< and [.• $
(...]
B:A$
B
(COLON A)
:::FOO$
(COLON (COLON (COLON FOO»)

17.1.3.1 - 17.1.3.2 Macro-operations

156

(PUT .READ-TABLE (+ 1 <ASCII !\:»
'(IFUNCTION «X) <LIST COLON <READ»»>

[...]
B:AS
B:A

;II(LIST APPLICABLE>: l1ke above. but not a break
now.IIS

;IIThat was an ATOM."
: : :FOOS
(COLON (COLON (COLON FOO»)

17.1.S.3. PARSE and LPARSE (finally)

(PARSE string radix lookup parss-tabls:vsctor look-ahead:character>

is the fullest call to PARSE. PARSE can take from zero to five arguments. If PARSE is given no
arguments. it returns the first object parsed from the local value of the STRING PARSE-STRING and
additionally SETs PARSE-STRING to the STRING having those CHARACTERs which were parsed RESTed
off. If PARSE is given a STRING to parse. the ATOM PARSE-STRING is rebound to the STRING within
that call. If the parse-tabls argument is given to PARSE. PARSE-TABLE is rebound to it within that
call to PARSE. Finally. PARSE can take a look-ahead CHARACTER. which is treated as if it were
logically concatenated to the front of the string being parsed. Other arguments are described in
sections 7.6.6.2 and 15.7.2.

LPARSE is exactly like PARSE, except that it tries to parse the whole STRING, returning a LIST of the
Objects created.

17.2. EVAL Macros

An EVAL macro provides the convenience of a FUNCTION without the overhead of calling. SPECIAls.
etc. in the compiled version. A special·purpose function that is caUed often by FUNCTIONs that will
be compiled is a good candidate for an EVAL macro.

17.2.1. DEFMAC and EXPAND

DEFMAC ("define macro") is syntacticaJ1y exactly the same as DEFINE. However. instead of creating a
FUNCTION, DEFMAC creates a MACRO. A MACRO is of PRIMTYPE LIST and in fact has a FUNCTION (or
other APPLICABLE TYPE) as its single element.

A MACRO can itself be applied to arguments. A MACRO is applied in a funny way. however: it is

. 17.1.3.2 • 17.2.1 Macro-operation.5

157

EVALed twice. The first EVAL causes the MACRO's element to be applied to the MACRO's arguments.
Whatever that application returns (usuaUy another FORM) is also EVALed. The result of the second
EVALUation is the result of applying the MACRO. EXPAND is used to perform the first EVAL without
the second.

To avoid complications. the first EVAL (by EXPAND, to create the object to be EVALed the second time
around) is done at top level. The result of this policy is that two syntactically identical invocations
of a MACRO always return the same expansion to be EVA Led in the 5eCond step. The first EVAL
generates two extra FRAMEs: one for a caJl to EXPAND, and one for a caU to EVAL the MACRO
application in a top-level environment.

Example:

(OEFMAC INC (ATM "OPTIONAL" (N 1»

INC
,INCS

IDECL «VALUE) FORM (ATM) ATOM (N) (OR FIX FLOAT»
<FORM SET .ATM (FORM + (FORM LVAL .ATM) .N»)S

IMACRO (IFUNCTION «ATM "OPTIONAL" (N 1» ... »
(SET X 1>S
1
(INC X>S
2
.XS
2
(EXPAND '(INC X»S
(SET X <+ .X I»

Perhaps the intention is clearer if PARSE and X are used:

(OEFMAC INC (ATM "OPTIONAL" (N 1»
IDECL (•••)
(PARSE "(SET X.ATM (+ X.ATM X.N»"»

MACROs rea))y exhibit their advantages when they are compiled. The compiler wi)) simply cause the
first EVALuation to occur (via EXPAND) and compile the result. The single element of a compiled
MACRO is an RSUBR or RSUBR-ENTRY.

17.2.2. Example

Suppose you want to change the following simple FUNCTION to a MACRO:

<DEFINE DOUBLE (X) IDECL «X) FIX) (+ .X .X»

17.2.1 - 17.2.2 Macro-operations

158

You may be tempted to write:

(DEFMAC DOUBLE (X) IDECL «X) FIX) (FORM + .X .X»

This MACRO works, but only when the argument does not use temporary bindings. Consider

(DEFINE TRIPLE (Y) <+ .Y <DOUBLE .Y»>

If this FUNCTION is applied, the top-level binding of Y is used, not the binding just created by the
application. Compilation of this FUNCTION would probably fail, because the compiler probably
would have no top-level binding for Y. Well. how about

<DEFMAC DOUBLE (IX) <FORM + .X .X» ;HThe DECL has to go.-

Now this is more like the original FUNCTION, because no longer is the argument evaluated and the
result evaluated again. And TRIPLE works. But now consider

(DEFINE INC-AND-DOUBLE (Y) <DOUBLE (SET Y <+ 1 .Y»»

You might hope that

(INC-AND-DOUBLE 1> -> <DOUBLE <SET Y <+ 1 1»>
-> <DOUBLE 2>
-> <+ 2 Z>
-> 4

But, when DOUBLE is applied to that FORM, the argument is QUOTEd, so:

<INC-AND-DOUBLE 1> -> <DOUBLE <SET Y <+ 1 .Y»>
-> <FORM + <SET Y <+ 1 .Y» <SET Y <1 .Y»>
-> <+ Z 3>
-> 5

So. since the evaluation of DOUBLE's argument has a side effect. you should ensure that the
evaluation is done exactly once, say by FORM:

(DEFMAC DOUBLE (IANY)
<FORM PROG «X .ANY» #DECL «X) FIX) 1(+ .X .X»>

As a bonus, the DECL can once more be used.

This example Is intended to show that writing good MACROs is a little trickier than writing good
FUNCTIONs. But the effort may be worthwhile if the compiled program must be speedy.

17.2.2 Macro-operations

159

Chapter 18. Maohine Words and Bits

The MDL facility for dealing with uninterpreted machine words and bits involves two data TYPEs:
WORD and BITS. A WORD is simply an uninterpreted machine word, while a BITS is a "pointer" to a
set of bits within a WORD. Operating on WORDs is usually done only when compiled programs are
used (chapter 19).

18.1. WORDs

A WORD in MDL is a PDp·I0 machine word of a6 bits. A WORD always PRINTs in "I format", and its
contents are always printed in octal (hence preceded and followed by It). Examples:

IWORD 0
IWORD ·000000000000·

#WORD ·ZOOO-
#WORD ·OOOOOOOOZOOO-

IWORD ·525252525252-
'WORD -SZSZSZSZ5Z5Z It

; "one bit 1"$

;"every other bit IN$

WORD is its own PRIMTYPE; it is also the PRIMTYPE of FIX, FLOAT, CHARACTER, and any other TYPE
which can fit its data into one machine word.

A WORD cannot be an argument to +. -, or indeed any SUBRs except for CHTYPE, GETBITS, PUTBITS
and several bitwise logical functions, all to be described below. Thus any arithmetic bit
manipulation must be done by CHTYPEing a WORD to FIX, doing the arithmetic, and then CHTYPEing
back to WORD. However. bit manipulation can be done without CHTYPEing the thing to be played
with to a WORD. so long as it is of PRIMTYPE WORD; the result of the manipulation will be of the same
TYPE as the original object or can be CHTYPEd to it.

18·18.1 Machine Words and Bits

160

18.2. BITS

An object of TYPE BITS is of PRIMTYPE WORD. and PRINTs just like a WORD. The internal form of a
BITS is precisely that of a PDp·IO "byte pointer". which is. in fact. just what a BITS is.

For purposes of explaining what a BITS is. assume that the bits in a WORD are numbered from right
to Jeft. with the rightmost bit numbered 0 and the leftmost numbered ~5. as in

35 34 33 ••. 2 1 0

(This is not the ·standard" ordering; the "standard" one goes from left to right.)

A BITS is most conveniently created via the SUBR BITS:

(BITS width:fiK right-edge:fiK>

returns a BITS which "points to" a set of bits width wide. with rightmost bit right-edge. Both
arguments must be of TYPE FIX, and the second is optional with default o.

Examples: the indicated application of BITS returns an object of TYPE BITS which points to the
indicated set of bits in a WORD:

(BITS 7) 35 ••. 7 6 •.• 0

(BITS 4 18> 35 •.• 22 21 20 19 18 17 ••• 0

(BITS 36) 35 ... 0

18.3. GETBITS

(GETBITS from:primtype-word bits>

where from is an object of PRIM TYPE WORD. returns a new object whose TYPE i. WORD. This object is
constructed in the following way: the set of bits in from pointed to by bit, i. copied into the new
object. right-adjusted. that is. lined up against the right edge (bit number 0) of the new object. All
those bits' of the new object which are not copied are set to zero. In other words. GETBITS takes bits
from an arbitrary place in from and puts them at the right of a new object. The from argument to
GETBITS is not affected.

Examples:

18.2 - 18.3 Machine Words and Bits

(GETBITS IWORD *777777777777* (BITS 3»S
IWORD *000000000007*
(GETBITS *012345670123* (BITS 6 18»S
'WORD *000000000045*

18.4. PUTBITS

(PUTBITS to:primtYP8-word bits from:primtYP8-word>

161

where to and from are of PRIMTYPE WORD, returns a copy of to, modified as follows: the set of bits in
to which are pointed to by bits are replaced by the appropriate number of rightmost bits copied
from from (optional, default 0). In other words: PUTBITS takes bits from the right of from and stuffs
them into an arbitrary position in to. None of the arguments to PUTBITS is affected.

Examples:

(PUTBITS IWORD *777777777777* (BITS 6 3»S
'WORD *777777777007*
(PUTBITS IWORD *666777000111* (BITS 5 15> IWORD *123*>5
IWORD *666776300111*
(PUTBITS IWORD *765432107654* (BITS 18»S
'WORD *765432000000*

18.5. Bitwise Boolean Operations

Each of the SUBRs ANDB, ORB, XORB, and EQVB takes arguments of PRIMTYPE WORD and returns a WORD
which is the bitwise Boolean "and", inclusive "or", exclusive "or", or "equivalence" (inverse of
exclusive "or"), respectively. of its arguments. Each takes any number of arguments. If no
argument is given. a WORD with all bits off (ORB and XORB) or on (ANDB and EQVB) is returned. If
only one argument is given, it is returned unchanged but CHTYPEd to a WORD. If more than two
arguments are given. the operator is applied to the first two, then applied to that result and the
third. etc. Be careful not to confuse AND and OR with ANDB and ORB.

18.3 -18.5 Machine Words and Bits

162

Chapter 19. Oompiled Programs

19.1. RSUBR (the TYPE)

RSUBRs rrelocatable subroutinesj are machine.language programs written to run in the MOL
environment. They are usually produced by the MDL assembler (often from output produced by the
compiler) although this is not necessary. AU RSUBRs have two components: the "reference vector"
and the "code vector". In some cases the code vector is in pure storage. There is also a set of
"fix ups" associated with every RSUBR, although it may not be available in the running MDt.

19.2. The Reference Vector

An RSUBR is basicaUy a VECTOR that has been CHTYPEd to TYPE RSUBR via the SUBR RSUBR (see
below~ This ex·VECTOR is the reference vector. The first three elements of the reference vector have
predefined meanings:

The first element is of TYPE CODE or PCODE and is the impure or pure code vector respectively.
The second element is an A TOM and specifies the name of the RSUBR.
The third element is of TYPE DECL and declares the type/structure of the RSUBR's arguments and

result.

The rest of the elements of the reference vector are objects in garbage·collected storage that the
RSUBR needs to reference and any impure slots that the RSUBR needs to use.

When the RSUBR is running. one of the PDP·I0 accumulators (with symbolic name R) is always
pointing to the reference vector. to permit rapid access to the various elements.

19· 19.2 Compiled Program5

163

19.3. RSUBR Linking

RSUBRs can call any APPLICABLE object. all in a uniform manner. In general. a call to an F/SUBR is
linked up at assembly/compile time so that the calling instruction (UUO) points directly at the code
in the interpreter for the F/SUBR. However. the locations of most other APPLICABLEs are not
known at assembly/compile time. Therefore. the calling UUO is set up to point at a slot in the
reference vector (by indexing off accumulator R). This slot initially contains the ATOM whose
C/LVAL is the called object. The calling mechanism (UUO handler) causes control to be transferred
to the called object and. depending on the state of the RSUBR-link flag. the ATOH will be replaced by
its C/LVAL. (If the call is of the "quick" variety. the called RSU~R or RSUBR-ENTRY will be CHTYPEd
to a QUICK-RSUBR or QUICK-ENTRY. respectively. before replacement.) Regardless of the RSUBR-link
flag's state. calls to FUNCTIONs are never permanently linked. A call to a non-Subroutine generates
an extra FRAME. whose FUNCT is the dummy ATOM CALLER.

RSUBRs are linked together for faster execution. but linking may not be desirable if the RSUBRs are
being debugged. and various versions are being reloaded. A linked call will forever after go to the
same code, regardless of the current G/LVAL of the called ATOM. Thus. wh lie testing RSUBRs. you
may want to disable linking. by calling the RSUBR-LINK SUBR with a FALSE argument. Calling it
with a non-FALSE argument enables linking thereafter. It returns the previous state of the link flag.
either T or 'FALSE (). Calling it with no argument returns the current state.

19.4. Pure and Impure Code

The first element of an RSUBR is the code vector. of TYPE CODE or PCODE. TYPE CODE is of PRIHTYPE
UVECTOR. and the UTYPE should be of PRIMTYPE WORD. The code vector is simply a block of words
that are the instructions which comprise the RSUBR. Since the code vector is stored just like a
standard UVECTOR, it will be moved around by the garbage collector. Therefore. all RSUBR code is
required to be location-insensitive. The compiler guarantees the location-insensitivity of its output.
The assembler helps to make the code location-insensitive by defining all labels as offsets relative to
the beginning of the code vector and causing instructions that refer to labels to index automatically
off the PDP-I0 accumulator symbolically named M. M. like R, is set up by the UUO handler. but it
points to the code vector instead of the reference vector. The code vector of an RSUBR can be frozen
(using the FREEZE SUBR) to prevent it from moving during debugging by DDT in the superior job
or fork.

If the first element of an RSUBR is of TYPE PCODE ("pure code"). the code vector of the RSUBR is pure
and sharable. TYPE PCODE is of PRIMTYPE WORD. The left half of the word specifies an offset into
an internal table of pure RSUBR.s. and the right half specifies an offset into the block of code where
this RSUBR starts. The PCODE prints out as:

%< PCODE nams:string offsst:fix>

19.3 - 19.4 Compiled Programs

Ui4

where name names the entry in the user's pure-RSUBR table, and offset is the offset. (Obviously.
PCOOE is also the name of a SUBR, which generates a pure code vector.) Pure RSUBRs may also move
around. but ollly by being included in MDL's page map at different places. Once again M can be
used exactly as before to do location-independent address referencing. Individual pure code vectors
can be ·unmapped" (marked as being not in primary storage but in their original pure-code disk
files) if the space in storage allocated for pure code is exhausted. An unmapped RSUBR is mapped in
again whenever needed. All pure RSUBRs are unmapped before a SAVE file is written. so that the
code is not duplicated on disk. A purified RSUBR must use RGLOC \relative GLOC1 instead of GLOC.
RGLOC produces objects of TYPE LOCR instead of LOCO.

19.5. TYPE -C and TYPE -W

In order to handle user NEWTYPEs reasonably, the internal TYPE codes for them have to be able to be
different from one MDL run to another. Therefore, references to the TYPE codes must be in the
reference vector rather than the code vector. To help handle this problem, two TYPEs exist, TYPE-C
rtype code' and TYPE-W ("type word"), both of PRIMTYPE WORD. They print as:

"<TYPE-C type primtype:atom>
"<TYPE-W type primtype:atom>

The SUBR TYPE-C produces an internal TYPE code for the type, and TYPE-W produces a prototype
-TYPE word" (appendix 1) for an object of that TYPE. The primtype argument is optional. included
only as a check against the call to NEWTYPE. TYPE-W can also take a third argument. of PRIMTYPE
\lORD, whose right half is included in the generated "TYPE word". If type is not a valid TYPE. a
NE\lTYPE is automatically done.

To be complete, a similar SUBR and TYPE should be mentioned here.

<PRIMTYPE-C type>

produces an internal "storage allocation code" (appendix 1) for the type. The value is of TYPE
PRIHTYPE-C t PRIMTYPE WORD. In almost all cases the SUBR TYPE PRIM gives just as much
information, except in the case of TEMPLATEs: all TYPEs of TEMPLATes have the same TYPEPRIM, but
they all have different PRIMTYPE-Cs.

19.6. RSUBR (the SUBR)

<RSUBR [code name decl ref ref •••]>

CHTYPEs its argument to an RSUBR, after checking it for legality. RSUBR is rarely called other than

19.4 - 19.6 Compiled Programs

165

in the MDL Assembler (ref 2). It can be used if changes must be made to an RSUBR that are
prohibited by MDL's built·in safety mechanisms. For example, if the GVAL of name is an RSUBR:

(SET FIXIT <CHTYPE ,name VECTOR)}$
[...]
••• (changes to .FIXIT) ••.

<SETG name <RSUBR .FIXIT»$
IRSUBR [•••]

19.7. RSUBR-ENTRY

RSUBRs can have multiple entry points. An RSUBR-ENTRY can be applied to arguments exactly like
an RSUBR.

<RSUBR-ENTRY [rsubr-or-atom nsme:stom dec/] offset:fix)

returns the VECTOR argument CHTYPEd to an RSUBR-ENTRY into the rsubr at the specified offset. If
the RSUBR-ENTRY is to have a DECL (RSUBR style), it should come as shown.

<ENTRY-lOC rsubr-entry)

("entry location") returns the offset into the RSUBR of this entry.

19.8. RSUBRs in Files

There are three kinds of files that can contain RSUBRs, identified by second names BINARY. NBIN and
FBIN. There is nothing magic about these names, but they are used by convention.

A BINARY file is a completely ASCII file containing complete impure RSUBRs in character
representation. Even a code vector appears as ICODE folJowed by a UVECTOR of FIXes, LOSEs or
WORDs. BINARY files are generaJly slow to load, because of aU the parsing that must be done.

An NBIN file contains a mixture of ASCII characters and binary code. The start of a binary
portion is signalled to READ by the character control.C, so naive readers of an NBIN file under ITS
may incorrectly assume that it ends before any binary code appears. An NBIN file cannot be edited
with a text editor. An RSUBR is written in NBIN format by being PRINTed on a ·PRINTB N CHANNEL
The RSUBRs in NBIN files are not purified either.

19.6· 19.8 Compiled Programs

166

An FBIN file is actually part of a triad of files. The FBIN file(s) itself is the impure part of a
co)Jection of purified RSUBRs. It is simply ASCII and can be edited at will. (Exception: under ITS.
the first object in the file should not be removed or changed in any way. lest a "grim reaper"
program for FBIN files think that the other files in the triad are obsolete and delete them.) The pure
code itself resides (under ITS) in a special large file that contains all currently-used pure code. or
(under TENEX) in a file in a special disk directory with first name the same as the name argument
to PCOOE for the RSUBR. The pure-code fUe is page-mapped directly into MDL storage in read-only
mode. It can be unmapped when the pure storage must be reclaimed. and it can be mapped at a
different storage address when pure storage must be compacted. There is also a fixup file (see
below) or portion of a file associated with the FBIN to round out the triad.

An initial MDL can have pure RSUBRs in it that were "loaded" during the initialization process. The
files are not page-mapped in until they are actually needed. The "loading" has other side effects,
such as the creation of OBLISTs (chapter 15). Exactly what is pre-loaded is outside the scope of this
document.

19.9. Fixups

The purpose of fix ups is to fix up references in the RSUBR to parts of the interpreter that change
from one version of MDL to the next. The reason the fixups contain a version number is so that
they can be completely ignored when an RSUBR is loaded into the same version of MDL from which
it was last written out.

There are three forms of fixups. corresponding to the three kinds of RSUBR files. ASCII RSUBRs.
found in BINARY files. have ASCII fixups. The fixups are contained in a LIST that has the
following format:

(MDL-version:fix
name:atom vafue:fix (use:fix use:fix •••)
name:atom vafue:fix (use:fix use:fix •••)
...)

The fixups in NBIN files and the fixup files associated with FBIN files are in a fast internal format
that looks like a UVECTOR of PRIMTYPE WORDs.

Fixups are usually discarded after they are used during the loading process. However. if. while
reading a BINARY or NBIN file the ATOM KEEP-FIXUPS 1- has a non-FALSE LVAL. the fix ups wiJ) be
kept. via an association between the RSUBR and the ATOM RSUBR. It should be noted that. besides
fixing up the code, the fixups themselves are fixed up when KEEP-FIXUPS is bound and true. Also.
the assembler and compiler make the same association when they first create an RSUBR. 50 that it
can be written out with its fixups.

19.8 - 19.9 Compiled Programs

167

In the case of pure RSUBRs (FBIN files). things are a little different. If a pure-code file exists for
this version of MOL. it is used immediately. and the fix ups are completely ignored. If a pure-code
file for this version doesn't exist. the fixup file is used to create a new copy of the file from an old
one, and also a llew version of the fixup file is created to go with the new pure-code file. This all
gOe$ on automatically behind the user's back.

19.9 Compiled Programs

168

Chapter 20. Multiprooessin"

This chapter purports to explain the multiprocessing primitives of MOL. It does make some
attempt to explain multiprocessing as such. but only as required to specify the primitives. If you
are unfamiliar with the basic concepts. confusion shall probably reign.

MDL's built-in multiprocessing primitives do not include a "time-sharing system". Only one
"process" is ever running at a time. and control is passed back and forth between "processes" on a
coroutine-like basis. The primitives are sufficient, however. to allow the writing of a "time-sharing
system" in MOL. with the additional use of the MOL interrupt primitives. This has. in fact. been
done.

20.1. PROCESS (the TYPE)

A PROCESS is an object which contains the "current state" of a computation. This includes the
LVALs of ATOMs {'"bindings', "depth" of functional application. and "position" within the application
of each applied function. Some of the things which are not part of any specific PROCESS are the
GVALs of ATOMs, associations (ASOCs), and the contents of OBLISTs. GVALs (with OBLISTs) are a chief
means of communication and sharing between PROCESSes (all PROCESSes can access the SUBR which
is the GVAL of +, for instance). Note that an LVAL in one PROCESS cannot easily be directly
referenced from another PROCESS.

A PROCESS PRINTs as #PROCESS p. where p is a FIX which uniquely identifies the PROCESS; p is the
"process number" typed out by LISTEN. A PROCESS cannot be read in by READ.

The term "run a PROCESS" will be used below to mean "perform some computation, using the
PROCESS to record the intermediate states of that computation".

N.B.: A PROCESS is a rather large object; creating one will often cause a garbage collection.

20 - 20.1 Multiprocessing

169

20.2. STATE of a PROCESS

<STATE process)

returns an ATOM (in the ROOT OBLISn which indicates the "state" of the PROCESS process. The ATOMs
which STATE can return. and their meanings. are as follows:

RUNABlE (sic) - process has never ever been run.

RUNNING - process is currently running. that is. it did the application of STATE.

RESUMABLE - process has been run. is not currently running. and can run again.

DEAD - process has been run. but it can .!!2!. run again; it has -terminated-.

In addition. an interrupt (chapter 21) can be enabled to detect the time at which a PROCESS becomes
'"blocked- (waiting for console input) or "unblocked" (console input arrived).

20.3. PROCESS (the SUBR)

< PROCESS starter:applicable)

creates and returns a new PROCESS but does ~ run it; the STATE of the returned PROCESS is
RUNABLE (sic).

starter is something applicable to Q!!! argument. which must be evaluated. starter is used both in
starting and "terminating" a PROCESS. In particular, if the starter of a PROCESS ~ returns a
value. that PROCESS becomes DEAD.

20.4. RESUME

The SUBR RESUME is used to cause a computation to start or to continue running in another
PROCESS. An appHcation of RESUME looks like this:

<RESUME retval:any process)

where retval is the "returned value" (see below) of the PROCESS that does the RESUME. and process is
the PROCESS to be started or continued.

The process argument to RESUME is optional, and the default is the last PROCESS, if any. to RESUME

20.2 - 20.4 Multiprocessing

170

the PROCESS in which this RESUME is applied. If and when the current PROCESS is later RESUMEd by
another PROCESS, that RESUME's retval is returned as the value of this RESUME.

20.5. Switching PROCESSes

20.5.1. Starting Up a New PROCESS

Let us say that we are running in some PROCESS, and that this original PROCESS is the GVAl of PO.
Somewhere, we have evaluated

<SETG Pl <PROCESS ,STARTER»

where ,STARTER is some appropriate function. Now, in ,PO. we evaluate

<RESUME .A ,Pl>

and the following happens:

(1) In • PO the arguments of the RESUME are evaluated: that is, we get that LVAL of A which is
current in ,PO and the GVAlof Pl.

(2) The STATE of • PO is changed to RESUMABLE and • PO is "frozen" right where it is. in the
middle of the RESUME.

(S) The STATE of ,PI is changed to RUNNING. and ,STARTER is applied to • PO's LVAL of A in ~.
,PI now continues on its way. evaluating the body of ,STARTER.

The .A in the RESUME could have been anything. of course. The important point is that. whatever it
is, it is evaluated in ,PO.

What happens next depends, of course, on what ,STARTER does.

20.5.2. Top-level Return

Let us initially assume that • STARTER does nothing relating to PROCESSes. but instead simply
returns a value •• say starval. What happens when ,STARTER returns is this:

(1) The STATE of ,Pl is Changed to DEAD. ,PI can never again be RESUMEd.

(2) The last PROCESS to RESUME ,PI is found, namely, PO, and its STATE is changed to RUNNING.

20.4 • 20.5.2 Multiprocessing

171

(3) starval is returned in , PO as the value of the original RESUME, and , PO continues where it left
off.

AU in aU, this simple case looks just like an elaborate version of applying ,STARTER to .A in , PO.

20.5.3. Symmetric RESUMEing

Now suppose that while still in , PI the following is evaluated, either in , STARTER or in something
caUed by ,STARTER:

<RESUME .BAR ,PO)

This is what happens:

(l) The arguments of the RESUME are evaluated i!!. ,Pl.

(2) The STATE of , PI is changed to RESUMABLE, and ,PI is "frozen" right in the middle of the
RESUME.

(3) The STATE of ,PO is changed to RUNNING, and , Pl's LVAL of BAR is returned as the value of
• PO'$ original RESUME. • PO then continues right where it left off.

This is the interesting case, because, PO can now do another RESUME of , PI; this will "turn off" , PO.
pau a value to , PI and "turn on" , PI. , PI can now again RESUME, PO. which can RESUME ,P 1 back
again. etc. !!! nauseam. with everything done in a perfectly symmetric manner. This can obviously
also be done with three or more PROCESSes in the same manner.

Note how this differs from normal functional application: you cannot "return" from a function
without destroying the state that function is in. The whole point of PROCESSes is that you can
"return" (RESUME), remembering your state, and later continue where you left off.

20.6. Example

;"Initially. we are in LISTEN in some PROCESS. M

<DEFINE SUM3 (A)

SUM3

IDECL ({A) (OR FIX FLOAT»
(REPEAT «S .A»)

IDECL «S) <OR FIX FLOAT»
<SET S <+ .S <RESUME "GOT I"»)
<SET S <+ .S <RESUME HGOT 2"»)
(SET S (RESUME .S»»$

20.5.2 • 20.6 Multiprocessing

172

;"SUM3, used as the startup function of another PROCESS,
gets RESUMEd with numbers. It returns the sum of the last
three numbers it was given every th i rd RESUME."
(SETG SUMUP (PROCESS ,SUM3»$
IPROCESS 2
;-Now we start SUMUP and give SUM3 its three numbers.
(RESUME 5 .SUMUP>S
-GOT 1-
(RESUME 1 .SUMUP>$
"GOT 2"
(RESUME 2 .SUMUP>S
8

Just as a note, by taking advantage of MDL's order of evaluation. SUM3 could have been written as:

(DEFINE SUM3 (A)
(REPEAT «S .A»

IDECL «A S) (OR FIX FLOAT»
(SET S (RESUME (+ .S (RESUME "GOT I"> (RESUME "GOT 2"»»»

20.7. Other Multiprocessing: Features

20.7.L BREAK-SEQ

(BREAK-SEQ sny process>

("break evaluation sequence") returns process, which must be RESUMABLE, after having modified it so
that when it is next RESUMEd, it will first evaluate any and then do an absolutely normal RESUME; the
value returned by any is thrown away, and the value given by the RESUME is used normally.

If a PROCESS is BREAK-SEQed more than once between RESUMEs, al1 of the anys BREAK-SEQed onto it
will be remembered and evaluated when the RESUME is finaJly done. The anys will be evaluated in
"last-in first-out" order. The FRAME generated by EVAUng more than one any wiJI have as its FUNCT
the dummy ATOM BREAKER.

20.7.2. MAIN

When you initially start up MDL, the PROCESS in which you are running is slightly "special" in
these two ways:

(1) Any attempt to cause it to become DEAD will be met with an ERROR.

20.6 - 20.7.2 Multiprocessing

173

(2) <MAIN> always returns that PROCESS.

The PROCESS number of <MAIN> is always 1. The initial GVAL of THIS-PROCESS is what MAIN always
returns, IPROCESS 1.

20.7.3. HE

<ME)

returns the PROCESS in which it is evaluated. The LVAL of THIS-PROCESS in a RUNABLE (new)
PROCESS is what ME always returns.

20.7.4. RESUMER

<RESUMER process)

returns the PROCESS which last RESUMEd process. If no PROCESS has ever RESUMEd process, it returns
'FALSE (). process is optional, with default <ME>. Note that <MAIN> does not ever have any
resumer. Example:

<PROG «R <RESUMER») ;Nnot effective in <MAIN>-
IDECl «R) <OR PROCESS FALSE»
<AND .R

20.7.5. SUICIDE

<==1 <STATE .R> RESUMABLE>
<RESUME T .R»>

<SUICIDE retvai process>

acts just like RESUME. but clobbers the PROCESS (which cannot be <MAIN» in which it is evaluated to
the STATE DEAD.

20.7.6. 1STEP

< 1STEP process>

returns process, after putting it into "single.step mode".

A PROCESS in single.step mode, whenever RESUMEd, runs only until an application of EVAL in it

20.7.2·20.7.6 Multiprocessing

174

begins or finishes. At that point in time, the PROCESS that did the ISTEP is RESUMEd, with a ret val

which is a TUPLE. If an application of EVAL just began. the TUPLE contains the ATOM EVLIN and the
arguments to EVAL If an application of EVAL just finished. the TUPLE contains the ATOM EVLOUT
and the result of the evaluation.

process will remain in single-step mode until FREE-RUN (below) is applied to it. Until then. it will
stop before and after each EVAL in it. Exception: if it is RESUMEd from an EVLIN break with a refval

of TYPE DISMISS (PRIMTYPE ATOM). it will leave single-step mode only until the current call to EVAL
is about to return. Thus lower-level EVALs are skipped over without leaving the mode. The
usefulness of this mode in debugging is obvious.

20.7.7. FREE-RUN

(FREE-RUN process)

takes its argument out of single-step mode. Only the PROCESS that put process into single-step
mode can take it out of the mode; if another PROCESS tries. FREE-RUN returns a FALSE.

20.8. Sneakiness with PROCESSes

FRAMEs, ENVIRONMENTs, TAGs. and ACTIVATIONs are specific to the PROCESS which created them, and
each "knows its own father", Any SUBR which takes these objects as arguments can take one which
was generated by !..!!.!. PROCESS. no matter where the SUBR is really applied. This provides a rather
sneaky means of crossing between PROCESSes, The various cases are as follows:

GO. RETURN. AGAIN. and ERRET. given arguments which lie in another PROCESS, each effectively
"restarts" the PROCESS of its argument and acts as if it were evaluated over there. If the PROCESS in
which it was executed is later RESUMEd, it returns a value just like RESUME!

SET. UNASSIGN. BOUND? ASSIGNED?, LVAL, VALUE, and LLOC, given optional ENVIROW'jENT
arguments which lie in another PROCESS, will gleefully change, or return. the local values of ATOMs
in the other PROCESS. The optional argument can equally well be a PROCESS. FRAME. or ACTIVATION
in another PROCESS; in those cases. each uses the ENVIRONMENT which is current in the place
specified.

FRAME. ARGS. and FUNCT will be glad to return the FRAMEs. argument TUPLEs. and applied Subroutine
names of another PROCESS. If one is given a PROCESS (including <ME» as an argument instead of a
FRAME. it returns all or the appropriate part of the topmost FRAME on that PROCESS's control stack.

If EVAL is applied in PROCESS PI with an ENVIRONMENT argument from a PROCESS P2. it will do the
evaluation in n but with P2's ENVIRONt1ENT (!). That is. the other PROCESS's LVALs, etc. will be used.

20.7,6 - 20.8 Multiprocessing

175

but (1) any ~ FRAMEs needed in the course of the evaluation will be created in Pl; and (2) li wi))
be RUNNING -- not P2. Note the following: if the EVAL in Pl eventually causes a RESUME of P2. P2
could functionally return to below the point where the ENVIRONMENT used in Pl is defined; a RESUME
of Pl at this point would cause an ERROR due to an invalid ENVIRONMENT. (Once again. LEGAL? can
be used to forestall this.)

20.9. FinaJ Notes

(I) A RESUMABLE PROCESS can be used in place of an ENVIRONMENT in any application. The
·current" ENVIRONMENT of the PROCESS is effectively used.

(2) FRAMEs and ENVIRONMENTs can be CHTYPEd arbitrarily to one another. or an AcnVA nON can be
CHTYPEd to either of them. and the result "works".

(3) Bugs in multi-process programs usually exhibit a degree of subtlety and nastiness otherwise
unknown to the human mind. If when attempting to work with multiple processes you begin to
feeJ that you are rapidly going insane. you are in good company.

20.8·20.9 Multiprocessing

176

Chapter 21. Interrupts

The MDL interrupt.handling facilities essentially provide the ability to say the following: whenever
"this event" occurs. stop whatever is being done at the time and perform "this action"; when "this
action" is finished. continue with whatever was originally being done. "This action" is the
application of a specified APPLICABLE object to specified arguments. "This event" can be things
like the typing of a character at a console, a time interval ending. a PROCESS becoming blocked. or a
user-defined and -generated "event". The sets of events and actions can be changed in extremely
flexible ways. which accounts for both the variety of SUBRs and arguments. and the rich
interweaving of the topics in this chapter. If you think you detect a similarity between interrupt
handling and multiprocessing, you're right.

21.1. Definitions of Terms

An interrupt is !!2t an object in MOL, but rather a class of events. for example, "ticks" of a clock,
garbage collections, the typing of a character at a console, etc.

An interrupt is said to have occurred when one of the events in its class takes place.

An interrupt is said to have been enabled when MOL has been told to react to its occurrence in some
way - that is, perform one or more actions when it occurs. A disabled interrupt causes no actions to
be performed.

An interrupt is said to have been offed when even the interpreter does not react to its occurrence.
An interrupt that is 2.!! (or "has been oned") is noticed by the interpreter. which then goes to see
whether the interrupt is enabled.

An action consists of applying a handler to arguments supplied by the interrupt system. The
number and meaning of the arguments depend on the specific interrupt.

Each interrupt has a !!..!.!!!! which is either a STRING (for example. "Gcn, "CHAR", "WRITP) or an
ATOM with that PNAME in a special OBlIST. named INTERRUPTS! -. (This OBLIST is returned by
<INTERRUPTS>.) Certain names must be further qualified by a CHANNEL or a LOCATIVE to tell which
interrupt by that name is meant.

21 - 21.1 Interrupts

177

Each interrupt that is on has a priority, a FIX greater than 0 which specifies itl "importance". The
processing of a higher-priority (larger-numbered) interrupt will supercede the processing of a lower
priority interrupt.

21.2. IHEADER and HANDLER (the TYPEs)

One IHEADER ('interrupt header") and a chain of HANDLERs are associated with each interrupt that is
on. Both TYPEs are of PRIM TYPE VECTOR, but they do not print as such, since they are circular.
Instead they PRINT as

'type most-interesting-component

The contents of IHEADERs and HANDLERs can be changed by PUT, and the new values will then
determine the behavior of MDL.

21.2.1. IHEADERs

There is one IHEADER associated with each interrupt that is on. EVENT and ON (see below) will
automatically create one if none exists, and OFF (see below) will destroy one when it has no reason to
continue existing. The elements of an IHEADER are as follows:

(J) name of interrupt (STRING. or CHANNEL if the name is "CHAR". or LOCATIVE if the name is
IIREAD" or "WRITP)

(2) nonzero if and only if disabled
(3) first HANDLER, if any. else a zero-length HANDLER
(4) priority

Obtaining an IHEADER is a little complicated.

For "READ" interrupts. <GET locative READ! -INTERRUPTS! -> returns the IHEADER.

For "WRITP interrupts. <GET locative WRITE I-INTERRUPTS! -> returns the IHEADER.

For "CHAR" interrupts. <GET channel INTERRUPTI-> returns the IHEADER.

Otherwise. the IHEADER is PUT on the name ATOM with the indicator INTERRUPT! -. Thus. for
example. (GET CLOCK I-INTERRUPTS INTERRUPTI-> returns the IHEADER for the clock interrupt
(if it exists).

21.1 - 21.2.1 Interrupti

178

21.2.2. HANDLERs

A new HANDLER is generated each time HANDLER or ON (see below) is applied. A HANDLER specifies a
particular action for a particular interrupt. The elements of a HANDLER are as fonows:

(I) next HANDLER if any, else a zero-length HANDLER

(2) previous HANDLER or the IHEADER (Thus the HANDLERs of a given interrupt form a "doubly
linked list- chaining between each other and back to the IHEADER.)

(3) handler to be applied (anything APPLICABLE that evaluates its arguments - the application
is done not by APPLY but by RUNINT, which can take a PROCESS argument: see next line)

(4) PROCESS in which the handler will be applied, or IPROCESS O. meaning whatever PROCESS
was running when the interrupt occurred. In the former case, RUNINT is applied to the handler
and its arguments in the currently running PROCESS, which causes an APPLY in the interrupt
PROCESS, which must be RESUMABLE. The running PROCESS becomes RESUMABLE, and the
interrupt PROCESS becomes RUNNING, but no other PROCESS variables (for example RESUMER) are
Changed.

21.3. EVENT

<EVENT name priority which>

This SUBR sets up an enabled IHEADER without adding any HANDLERs. It returns the IHEADER. The
name may be an ATOM in the INTERRUPTS OBLIST or a STRING. (If it is a STRING. EVENT does a
LOOKUP or INSERT in <INTERRUPTS>.)

which must be given only for certain names. It must be a CHANNEL if and only if name is "CHAR" or
CHAR! - INTERRUPTS 1-. In this case it is the input CHANNEL from the (pseudo-)console or Network
socket whose received characters will cause the interrupt to occur, or the output CHANNEL to the
pseudo-console or Network socket whose desired characters will cause the interrupt to occur. (See
section 21.10.1 below. Pseudo-consoles are not available under TENEX.) The argument must be a
LOCATIVE if and only if name is "READ" (or the ATOM) or "WRITP (or the ATOM). In this case it
specifies an object to be "monitored" (section 21.10.7).

EVENT can also be called with one argument, an IHEADER. If this IHEADER was previously disabled or
OFFed. EVENT will reinstate and enable it.

21.2.2 - 21.3 Interrupts

179

21.4. HANDLER (the SUBR)

<HANDLER iheader applicable process>

Thi5 SUBR makes a HANDLER, attaches it to the front of iheader's HANDLER chain (first to be
performed). and returns it as a value. app/icabltl may be either an APPLICABLE handler or a
previously OFFect HANDLER. (In the latter case the HANDLER is put into the chain, and a new HANDLER
is not created.) process is optionaL with default 'PROCESS O.

21.5. ON

<ON name applicable priority:fix process which>

ON is a combination of EVENT and HANDLER: it creates or finds the IHEADER. reinstates and enables it,
and adds a HANDLER to the front of the chain (first to be performed). It returns the HANDLER.

The process argument is optional. It can be supplied as, and defaults to, 0, meaning 'PROCESS O.
which is only sometimes required, as for EVENT.

Note: priority is associated with an interrupt. ~ with a particular action. If ON specifies a
previously-on interrupt, the new priority i5 effected for aU existing actions on that interrupt. For
this reason the SUBR HANDLER is often preferable. (ON can leave the priority unchanged by GETing it
out of the IHEAOER.)

21.S. OFF

<OFF ispec which>

turns off an interrupt or an action and returns ispec. Exactly what happens depends on the ispec
argument as follows:

If ispec is a name (STRING, ATOM, or IHEADER), OFF completely turns off the interrupt; all actions
associated with that interrupt are thrown away. (An error occurs if the interrupt is not ON or has no
HANDLERs.) The IHEADER is thrown away if nobody points to it. Even the interpreter does not
respond to occurrences of the interrupt.

If ispec is a HANDLER, OFF removes it from its chain. There is no effect on any other HANDLERs
associated with that interrupt.

which must be specified as a CHANNEL if and only if isptlc 15 "CHAR" or CHAR I - INTERRUPTS 1- •
Caution: don't <OFF "CHAR II • INCHAN> without ONing it again or MDL wiJJ become deaf.

21.4 - 21.6 Interrupts

180

which must be specified as a locative if and only if ispfJC is "READ" or "WRITEII (or one of the
corresponding ATOMs).

21.7. DISABLE

(DISABLE iheader>

returns its argument and causes interrupts associated with ihfJ,dfJr to be noticed by the interpreter
but not passed on to the HANDLERs in the chain. This is inefficient, I unless the HANDLER chain must
be preserved.

21.8. gNABLE

(ENABLE iheader>

returns its argument and causes interrupts associated with ihfJader to be passed on to the HANDLERs.

21.9. Priorities and Interrupt Levels

At any given time there is a defined interrupt ~ This is a FIX which determines which
interrupts can really "interrupt" - that is, cause the current processing to cease while their wants are
satisfied.

Normal, non-interrupt programs operate at an interrupt level of O. Processing done for interrupts is
done at an interrupt level equal to the interrupt's priority.

21.9.1. Interrupt Processing

Interrupts "actually" occur only at well-defined points in time: during a call to a Subroutine, or at
critical places within Subroutines (for example, during each iteration of HAPF on a LIST, which may
be circular). or while a PROCESS is "BLOCKED" (see below). No interrupts can occur during garbage
collection.

What actually happens when an enabled interrupt occurs is that the priority of the interrupt is
compared with the current interrupt level. and the following is done:

If the priority is greater than the current interrupt level, the current proce»ing is "frozen in its
tracks" and processing of the action(s) specified for that interrupt begins.

21.6 - 21.9.1 Interrupts

181

If the priority i5 leu than or equal to the current interrupt level, the interrupt occurrence is queued
•• that is, the fact that it occurred is saved away for processing when the interrupt level becomes low
enough.

When the processing of an interrupt's actions is completed. MDL usually (I) "acts as if" the
previously-existing interrupt level is restored. and processing continues on what was left off
(perhaps for no time duration); and (2) "acts as if" any queued interrupt occurrences actually
occurred right then. in their original order of occurrence.

The value returned by the handler of an interrupt's HANDLER is ignored, unless it is of TYPE DISMISS
(PRIHTYPE ATOM). in which case none of the remaining HANDLERs in the chain will be invoked.

The processing of an interrupt's actions can terminate prematurely if a handler calls the SUBR
D ISM ISS (see below).

21.9.2. INT-LEVEL

The SUBR INT-LEVEL is used to examine and change the current interrupt level directly.

<INT-LEVEL>

simply returns the current interrupt level.

<INT-LEVEL fix>

changes the interrupt level to its argument and returns the previously-existing interrupt level.

If INT-LEVEL lowers the interrupt level, it does not "really" return until all queued occurrences of
interrupts of priority higher than the target priority have been processed.

Setting the INT-LEVEL extremely high (for example. <INT-LEVEL <CHTYPE <MIN> FIX») effectively
disables all interrupts (but occurrences of enabled interrupts will still be queued).

If LISTEN or ERROR is called when the INT-LEVEL is not zero, then the typeout will be

LISTENING-AT-LEVEL I PROCESS pINT-LEVEL i

21.9.3. DISMISS

DISMISS permits a handler to return an arbitrary value for an arbitrary ACTIVATION at an arbitrary
interrupt level; The call is as follow&:

<DISMISS value:any activation int-/evel:fix>

21.9.1 - 21.9.3 Interrupts

182

where only the V.tUB is required. If activation is omitted. return is to the place interrupted from. If
int-Ievel is omitted. the INT-LEVEL prior to the current interrupt i, restored.

21.10. SpecifiC Interrupts

Descriptions of the characteristics of particular "built·in" MDL interrupti follow. Each is named by
its STRING name. Expect this Jist to be incomplete yesterday.

21.10.1 •• CHAR II

·CHAR· is currently the most complex built·in interrupt. It occurs every time either

(1) a character arrives from the (pseudo.)console or Network socket. or

(2) a character is required by the pseudo.console or Network socket, or

(3) a line-feed character is output or (under ITS) the operating system generates a screen·fuJl
interrupt

for the CHANNEL in the IHEADER. There is an IHEADER for each CHANNEL for wh ich the .. CHAR"
interrupt is on.

Under ITS, even though the interrupt occurs in case (1) for each console character received. the
operating system holds off receipt until an "activation" character is typed. The activation
characters are A@ through AG, "K, AL, AN through and DEL (that is. ASCII codes 0.7.13. 14. 16-
36. and 177 octal). Under TENEX. this interrupt occurs immediately. The operating system can be
told which characters typed on a console should cause this interrupt to occur. by calling the SUBR
ACTIVATE-CHARS with a STRING argument containing those characters. If caUed with no argument.
ACTIVATE-CHARS returns a STRING containing the characters that currently interrupt. Initially. only
AG. AS. and AO interrupt. Pseudo-consoles are not available under TENEX.

An initial MDL already has "CHAR II enabled on ,INCHAN with priority 8 and a handler named
QUITTER to run in process 0; this is how AG and S are processed. In addition. every time a new
CHANNEL is opened in "READII mode to a console, a similar IHEADER and HANDLER are ONed for that
new CHANNEL automatically. These automatically-generated interrupt handlers use the standard
IHEADER and HANDLER machinery, and can be DISABLEd or OFFed at will. However. the IHEADER for
• INCHAN must not be OFFed: MOL knows that $ is typed only by an interrupt (!).

The handler supplied for an input "CHARII interrupt on a real console must take ~ arguments: (1)
the CHARACTER which was typed. and (2) the CHANNEL on whIch it was typed. The handler supplied
for an output "CHAR" interrupt on a real console must take one or two arguments (using

21.9.3 - 21.10.1 Interrupts

183

"OPTIONAL" or "TUPLE")I if two arguments are supplied by the interrupt system. they are the line
number (FIX) and the CHANNEL, respectively. and the interrupt is for a line-feed; if only one
argument is supplied (only under ITS). it is the CHANNEL, and the interrupt is for a full console
screen.

Example: the following causes the given message to be printed out whenever a Ay is typed on
.INCHAN:

<HANDLER <GET .INCHAN INTERRUPT}
IFUNCTION «CHAR CHAN)

IDECL «VALUE) ANY (CHAR) CHARACTER (CHAN) CHANNEL)
<AND <==7 .CHAR !\Ay>

<PRINC " some of my best friends are AYS.·}»>S
IHANDLER IFUNCTION«CHAR CHAN) ••.)
UVWXAY some of my best friends are AYs.ZABS
UVWXAYZAB

Note that occurrences of "CHAR" do !!2l wait for the S to be typed.

Under ITS, a "CHAR" interrupt can also be associated with a CHANNEL open to a pseudo.consoJe
("STY" device and friends) for either input or output. An input CHANNEL will cause an interrupt
when a character is available. and an output CHANNEL will cause an interrupt when the program at
the other end needs a character (and the operating-system buffer is empty). These interrupts are
enabled in exactly the same way as real-console interrupts. except that the handler gets applied to
only one argument. the CHANNEL

A ·CHAR- interrupt can also be associated with a CHANNEL open to a Network socket ("NEP device)
for either input or output. The handler gets applied to a NETSTATE array (which see) and the
CHANNEL

21.10.2. - GC"

-GC· occurs just after every garbage collection. Enabling this interrupt is the only way to tell from
a program that a garbage collection has occurred. A handler for "GC" takes three arguments. The
first is the time for garbage collection. This is a FLOAT indicating the number of seconds it took.
The second argument is a FIX indicating the cause of the garbage collection. as follows (chapter 22):

O. Program called GC.
1. Movable storage was exhausted.
2. Control stack overflowed.
3. Top-level LVAls overflowed.
4. Global vector overflowed.
5. TYPE vector overflowed.
6. Immovable garbage-collected storage was exhausted.

21.10.1 - 21.10.2 Interrupts

184

7. Internal stack overflowed.
8. Both control and internal stacks overflowed (rare).
9. Pure storage was exhausted.
10. Second, exhaustive garbage coUection occurred.

The third argument is an ATOM indicating what initiated the garbage collection: BLOAT. GROW.
LIST, VECTOR, SET. SETG. FREEZE. GC. NEWTYPE. PURE-PAGE-LOADER (pure storage was
exhausted), or INTERRUPT-HANDLER (stack overflow, unfortunately).

2LlaL -DIVERT-AGC-

"DIVERT -AGC· ("Automatic Garbage CoJ)ection") occurs just before a deferrable garbage collection
because of exhausted movable garbage-coJ)ected storage. Enabling this interrupt is the only way to
tell from a MDL program that a garbage colJection is about to occur. A handler takes two
arguments: a FIX telling the number of words needed and an ATOM telling what initiated the garbage
collection (above). If it wishes, a handler can avoid a garbage colJection by calling BLOAT. If the
pending request for garbage-collected storage cannot then be satisfied, a garbage collection occurs
anyway. AGC-FLAG is SET to T while the handler is running, so that new storage requests do not try
to cause a garbage collection.

21.10.4. • CLOCK·

·CLOCK". when enabled, occurs every half second (the ITS slow clock tick). It i. not available under
TENEX. It wants handlers which take no arguments. Example:

<ON "CLOCK" <FUNCTION () (PRINC "TICK "» 1>

21.10.5. UBLOCKED"

"BLOCKED· occurs whenever any PROCESS (not only the PROCESS which may be in a HANDLER) !!.!!:!.!
waiting for console input; that is, it indicates that somewhere, somebody did a READ. READCHR,
NEXTCHR. TYI, etc. to a console. The handler for a "BLOCKED" interrupt should take one argument,
namely the PROCESS which started waiting (which will also be the PROCESS in which the handler
runs, if none is in the HANDLER).

Example: the following will cause MDL to acquire a JII prompt character.

<ON "BLOCKED" IFUNCTION «IGNORE) (PRINC 1\-» 5)

21.10.2 - 21.10.5 Interrupts

185

21.10.6. "UNBLOCKED"

"UNBLOCKED" occurs whenever an $ (ESC) is typed on a console where a program was hanging.
waiting for input, or when a TVI (which see) is satisfied. The handler it wants takes one argument:
the CHANNEL on which the S or character was typed.

21.10.7. IIREAD- and "WRITP

"READ" and "WRITP are associated with read or write access to MDL objects. These interrupts are
often called "monitors", and enabling the interrupt is often called "monitoring" the associated object.
"Read acces.s" to an ATOM's local value includes applying BOUND? or ASSIGNED? to the ATOM; similarly
for a global value and GASSIGNED?

Monitors are set up with EVENT or ON, using an extra argument, which is a locative to the object
being monitored, just as a CHANNEL is given for "CHARII, A handler for "READ- takes two arguments:
the locative and the FRAME of the application that does the read. A handler for -WRITP takes three
arguments: the locative, the new value. and the FRAME. For example:

<SET A '(I Z 3»
<SET B <AT .A 2»
(ON "WRITE" <FUNCTION (OBJ VAL FRM)

21.10.8. IISYSDOWN"

#DECL «VALUE) FALSE (FRM) FRAME)
<TERPRI>
<PRINC "Attempt to smash II)

<PRINI .OBJ)
(PRINC II with ")
<PRINI • VAL>
(PRINC " from "')
<PRINI .FRM)
<TERPRI»
4 0 .B)

HSYSDOWN" occurs when a system-going-down or system-revived signal is received from ITS. It is
not available under TEN EX. If no HANDLERs exist, a warning is printed on the console. A handler
takes one argument: a FIX giving the number of 30ths of a second until the end of the world (-1 for
a reprieve).

21.10.6 - 21.10.8 Interrupts

186

21.10.9. "ERROR"

In an effort to simplify ERROR handling by programs. MDL has a facility a)Jowing errors to be
handled like interrupts. SETGing ERROR to a user function i$ a distasteful method. not safe if any
bugs are around. An aERROR" interrupt wants a handler that takes any number of arguments.
When an error occurs. each handler will be applied to the FRAME of the ERROR call and the TUPLE of
ERROR arguments. If a given handler "takes care of the error·. it can ERRET with a value frOID the
ERROR FRAME. after having done an (INT-LEVEL 0>. If no handler takes care of the error. it falls
into the normal ERROR.

If an ERROR occurs at an INT-LEVEL greater than or equal to that of the "ERROR" interrupt. reaJ
ERROR will be caJled. because attempts to defer "ERROR" interrupts are illegal.

21.10.10. "IPC"

"IPC· occurs when a message is received on the ITS IPC device (chapter 23). It is not available
under TENEX.

21.10.11. "INFERIOR"

"INFERIOR" occurs when an inferior ITS job interrupts the MDL job. It is not available under
TENEX. A handler talees one argument: a FIX between 0 and 7 inclusive, telling which inferior i.
interrupting.

21.10.12. II RUNP and II REAL P

These are not available under TENEX.

"RUNT". if enabled, occurs once, N seconds of MDL running time (CPU time) after calling
<RUNTIMER N:fix-or-float>, which returns its argument. A handler takes no arguments .

.. REAL T". if enabled. occurs every N seconds of real-world time after calling <REAL TIMER N:fix-or
flo.O. which returns its argument. A handler takes no arguments.

21.10.13. "Dangerous· Interrupts

Ideally. these interrupts should never occur. If one does, and only if no handlers are enabled for it.
the argument(s) that would have gone to a handler go to ERROR instead. If any of them are OF Fed
(always. under TENEX). the interrupt goes to the superior job or fork instead.

21.10.9 - 21.10.13 Interrupts

187

"MPV" ("memory-protection violation") occurs if MOL tries to refer to a storage address not in its
address space. ·PURE" occurs if MOL tries to alter read-only storage. "ILOPR" occurs if MOL
executes an illegal instruction ("operator"). "PARITY" occurs if the CPU detects a parity error in
MDL's address space (it is fatal if not handled). AU of these reqUire a handler that takes one
argument: the address (TYPE WORD) at which the offending instruction resides.

• IOC· occurs if MDL tries to deal illegally with an 1/0 channel. A handler must take two
arguments: a three-element FALSE like OPEN might return, and the CHANNEL getting the error.

21.11. User-Defined Interrupts (INTERRUPTI

If the interrupt name given to EVENT or ON is lli!! one of the standard predefined interrupts of MOL.
they will gleefully create an IHEADER anyway, making the assumption that you are enabling a "user
defined interrupt'".

User-defined interrupts are made to occur by applying the SUBR INTERRUPT. as in

< INTERRUPT name arg 1 ••• argN)

where n~me is a STRING. ATOM or tHEADER, and argI through argN are the arguments wanted by the
handlers for the interrupt.

If the interrupt specified by INTERRUPT is enabled. INTERRUPT returns T; otherwise it returns IFALSE
(). All the usual priority and queueing rules hold, so that even if INTERRUPT returns T. it is possible
that nothing '"really happened" (yet).

INTERRUPT can also be used to cause '"artificial" occurrences of standard predefined MDL interrupts.

21.12. Waiting for Interrupts

21.12.1. HANG

<HANG pred)

hangs interruptibly, without consuming any time. potentialJy forever. HANG is nice for a program
that cannot do anything until an interrupt occurs. If the optional pred is given. it is evaluated
every time an interrupt occurs and is dismissed back into the HANG; if the result of evaluation is not
FALSE. HANG unhangs and returns it as a value. If pred is not given. there had better be a named
ACTIVATION somewhere to which a handler can return.

21.10.18 • 21.12.1 Interrupts

188

21.12.2. SLEEP

(SLEEP time:fix-or-f1oat pred>

hangs for time seconds interruptibly. where time is non.negative. and then returns T. pred is the
same as for HANG.

21.12.2 Interrupts

189

Chapter 22. Storage Management

The reason this chapter comes so late in this document is that, except for special cases, MDL
programs have their storage needs handled automatically. There is usually no need even to consider
storage management, except as it affects efficiency (chapter 24). This chapter gives some
explanation of why this is 50, and covers those special means by which a program can assume
control of storage management.

The MDL address space is divided into five parts, which are usually caUed

(1) movable garbage-co))ected space,
(2) immovable space (both garbage-collected and not).
(3) user pure/page space.
(4) pure-RSUBR mapping space, and
(5) internal storage.

Internal storage occupies both the highest and lowest addresses in the address space. and its size
never changes as MDL executes. The other spaces can vary in size according to the needs of the
executing program. Generally the interpreter allocates a contiguous set of addresses for each space.
and each space graduaUy fills up as new objects are created and as disk files are mapped in. The
action taken when a space becomes fuU varies, as discussed below.

22.1. Movable Garbage-coUected Storage

Most storage used explicitly by MDL programs is obtained from a pool of free storage managed by
a "garbage collector". Storage is obtained from this pool by the SUBRs which construct objects.
When such a SUBR finds that the pool of available storage is exhausted. it automatically calls the
garbage collector.

The garbage coUector examines the storage pool and separates all the objects there into two classes:
those which can possibly be referenced by a program. and those which cannot. The former are then
compacted (moved) into one section of the pool. and the remainder of the pool is made available for
new constructed objects. A garbage colJection can be normal or exhaustive. the difference being
whether certain kinds of storage that require complicated treatment (for example. associations) are

22 - 22.1 Storage Management

190

reclaimed. An exhaustive garbage collection occurs every S2nd time, or possibly when the garbage
collector is explicitly called by a program (see below), or when a normal garbage collection cannot
satisfy the storage request.

If the request for more storage still cannot be satisfied from reclaimed storage, the garbage collector
will attempt to obtain more total storage from the operating system under which MOL runs. (Also,
if there is a gross superfluity of storage space, the garbage collector will politely return some
storage to tbe operating system.) Only when the total system resources are exhausted will you
finally lose.

Thus. if you just "forget about" a datum, that is, lose all possible means of referencing it, its storage
area is automatically reclaimed. "Datum" in this context includes that stack-structured storage
space used in PROCESSes for functional application.

22.1.1. Stacks and Other Internal Vectors

Control stacks are used in MDL to control the changes in environment caused by calling and
binding. Each active PROCESS has its own control stack. On this stack are stored LVALs for ATOMs;
PRIHTYPE TUPLEs, which are otherwise like VECTORs; PRIMTYPE FRAMEs, which are generated by
calling Subroutines; and ACTIVATIONs, which are generated by calling FUNCTIONs with named
ACTIVATIONs, PROG. and REPEAT. TAG and LLOC can make TAGs and LOCOs (respectively) that refer to
a specific place on a specific control stack. (LEGAL 7 returns T if and only if the portion of the
control stack in which its argument is found or to which its argument refers is stiU active. or if its
argument doesn't care about the control stack. The garbage collector may change a non-LEGAL?
object to TYPE ILLEGAL before reclaiming it.) As the word "stack" implies. things can be put on it
and removed from it at only one end. called the top. It has a maximum size (or depth). and
attempting to put too many things on it will cause overflow. A stack is stored like a vector, and it
must be GROWn if and when it overflows.

A control stack is actually two stacks in one. One section is used for "top-level" LVALs -- those SET
while the ATOM is not bound by any active Function's argument LIST or Subroutine's SPECIAL
binding -- and the other section is used for everything else. Either section can overflow, of course.
The top-Ievel-LVAL section is below the other one, so that a top-level LVAL will be found only if the
ATOM is not currently bound elsewhere, namely in the other section.

MDL also has an internal stack, used for calling and temporary storage within the interpreter and
compiled programs. It too is stored like a vector and can overflow. There are other internal vectors
that can overflow: the "global vector" holds pairs ("slots") of ATOMs and corresponding GVALs
("globally bound" means that the ATOM in question is in this vector, whether or not it currently has a
global value), and the "TYPE vector" holds TYPE names (predefined and NEWTYPEs) and how they are
to be treated.

22.1 - 22.1.1 Storage Management

191

22.2. Immovable Storage

22.2.1. Garbage-collected: FREEZE

In very special circumstances, such as debugging RSUBRs, you may need to prevent an object from
being moved by the garbage collector. FREEZE takes one argument, of PRIMTYPE VECTOR. UVECTOR,
STRING or TUPLE. It copies its argument into non-moving garbage-collected space. FREEZE returns
the copy CHTYPEd to its PRIM TYPE, except in the case of a TUPLE, which is changed to a VECTOR.

22.2.2. Non-garbage-coll~cted: STORAGE (the PRIMTYPE)

An object of PRIMTYPE STORAGE is really a frozen UVECTOR whose UTYPE is of PRIMTYPE WORD. but it
is always pointed to by something internal to MDL and thus is never garbage-COllectible. The use
of FREEZE is always preferable, except when for historical reasons a STORAGE is necessary. for
example when displaying PICTUREs: the principle use of STORAGE is in communicating with the
Evans and Sutherland Display, which autonomously accesses primary storage and must run
concurrently with garbage collection.

22.3. Other Storage

User pure/page space serves two purposes. First, when a user program PURIFYs (see below) MDL
objects. they are copied into this space. Second. so-caUed hand-crafted RSUBRs (assembled but not
compiled) can call on the interpreter to map pages of data files into this space for arbitrary
purposes.

Pure-RSUBR mapping space is used by the interpreter to dynamically map pages of pure compiled
programs into and out of the MDL address space. Pure code can refer to impure storage through
the "transfer vector", another internal vector. This space is the most vulnerable to being compressed
in size by the long-term growth of other spaces.

Internal storage has both pure and impure parts. The interpreter program itself is pure and
sharable. while impure storage is used for internal pointers, counters, and flags, for example,
pointers to the boundaries of other spaces. In the pure part of this space are most of the ATOMs in
an initial MDL. along with their OBLIST buckets (LISTs) and GVAL slots (a pure extension of the
global vector). where possible. A SET or SETG of a pure ATOM automatically impurifies the ATOM and
as much of its OSLIST bucket as needs to be impure.

22.2 - 22.3 Storage Management

192

22.4. Garbage Collection: Details

When either of the garbage-colJected spaces (movable or immovable) becomes full. MDL goes
through the following procedure:

(1) A "DIVERT-AGC" interrupt occurs if the garbage colJection can be deferred temporarily by
shifting boundaries between storage spaces slightly. The interrupt handler may postpone a garbage
coIlection by moving boundaries itself with a call to BLOAT (below).

(2) The garbage colJector begins execution. It creates an inferior job (under ITS. named AGe) or
fork (under TENEX) whose address space is used to hold the new copies of non-garbage objects.
MDL accesses the inferior's address space through two pages ("frontier" and "window") in its internal
space that are shared with the inferior.

(3) The garbage collector marks and moves all objects that can possibly be referenced hereafter. It
begins with the <MAIN) PROCESS and the currently running PROCESS <ME>, considered as vectors
containing the control stacks, object pointers in live registers, etc. Every object in these "process
vectors" is marked "acces.sible", and every element of these objects (bindings, etc.), and so on
recursively.

(4) If the garbage collection is "exhaustive", then both the chain of associations and top-level
local/global bindings are marked last. which takes more time but is more likely to uncover garbage
therein. In a normal garbage collection these constructs are not treated specially.

(5) FinaIly. the inferior job/fork's address space is mapped into MDL's own, replacing old garbagey
storage with the new compact storage, and the inferior is destroyed.

22.5. GC

(GC min:fix exh?:false-or-any>

causes the garbage collector to run and returns the total number of words of storage reclaimed.
Both of its arguments are optional; if they are not supplied, a call to GC simply causes a normal
garbage collection.

If min is explicitly supplied as an argument, a garbage-collection parameter is changed permanently
before the garbage collector runs. min is the smallest number of words of "free" (unclaimed,
available for use) movable garbage-collected storage the garbage collector will be satisfied with
having after it is done. Initially it is 8192 words. If the total amount of reclaimed storage is less
than min. it will ask the operating system for enough storage (in l024.word blocks) to make it up.
N.B.: the system may be incivil enough not to grant the request; in that case, the garbage collector
will be content with what it has, unless that is not enough to satisfy a pending request for storage.

22.4 - 22.5 Storage Management

193

Then it wiU inform you that it is losing. A large min will result in fewer total garbage collections,
but they will take longer since the total quantity of storage to be scanned will generally be larger.
Smaller mins result in shorter, more frequent garbage collections.

exh? teUs whether or not the garbage collection should be exhaustive. It is optional, with default a
FALSE.

22.6. BLOAT

BLOAT is used to cause a temporary expansion of the available storage space with or without
changing the garbage-collection parameters. BLOAT is particularly useful for avoiding unnecessary
garbage collections when loading a large file. It will cause (at most) one garbage collection, at the
end of which the available storage will be at least the amount specified in BLOArs application.
(Unless. of course, the operating system is cranky and will not provide the storage. Then you will
get an error. <ERRET 1> from this error will cause the BLOAT to return 1, which usually just causes
you to lose at a later time - unless the operating system feels nicer when the storage is absolutely
necessary.)

A call to BLOAT looks like this:

(BLOAT fre stk leI glb typ sto pstk
min plcl pglb ptyp imp pur dpstk dstk>

where all arguments on the first line are FIX, optional (default 0), and indicate the following:

fre: number of words of free movable storage desired (for LISTs, VECTORs. ATOMs, etc.)

sllc number of words of free control-stack space desired (for functional applications and
binding of ATOMs)

leI: number of new top-level LVALs for which to leave space (SETs of ATOMs which are not
currently bound)

glb: number of new GVALs for which to leave space (in the global vector)

typ: number of new TYPE definitions for which to leave space (in the TYPE vector)

slo: number of words of immovable garbage-collected storage desired

pst/<: number of words of free internal-stack space desired (for READing large STRINGs, and
calling routines within the interpreter and compiled programs)

22.5 - 22.6 Storage Management

194

Arguments on the second line are also FIX and optional. but they set garbage-coUection parameters
permanently. a, followSl

min: as for GC

pld: number of slots for LVALs added when the space for top-level LVALs is expanded (initially
64)

pglb: number of slots for GVALs added when the global vector is grown (initialJy 64)

ptyp: number of slots for TYPEs added when the TYPE vector is grown (initiaJly 32)

imp: number of words of immovable garbage-collected storage added when it is expanded
(initiaJJy 1024)

pur: number of words reserved for pure compiled programs, if possible (initially 0)

dpstk: most desirable size for the internal stack, to prevent repeated shrinking and GROWing
(initially 512)

dstk: most desirable size for the control stack (initially 4096)

BLOAT returns the actual number of words of free movable garbage-collected storage available when
it is done.

22.7. BLOAT-STAT

BLOAT-STAT can be used with BLOAT to "tune" the garbage collector to particular program
requirements.

<BLOAT-STAT length-27:uvector>

fiUs the uvector with information about the state of storage of MOL. The argument should be a
UVECTOR of length 27 and UTYPE FIX. If BLOAT-STAT does not get an argument. it wiJJ provide its
own UVECTOR. The information returned is as follows: the first 8 elements indicate the number of
garbage coJJections that are attributable to certain causes, and the other 19 give information about
certain areas of storage. In detail:

1. number of garbage collections caused by exhaustion of movable garbage-coJJected storage
2. ditto by overflow of control stack(s)
3. ditto by overflow of top·level-LVAL section of control stack(s)
4. ditto by overflow of global vector
5. ditto by overflow of TYPE vector

22.6 - 22.7 Storage Management

6. ditto by exhaustion of immovable garbage-coJJected storage
7. ditto by overflow of internal stack
8. ditto by overflow of both stacks at the same time (rare)

9. number of words of movable storage
10. number of words of movable storage used since last BLOAT-STAT
11. maximum number of words of movable storage ever existing
12. number of words of movable storage used since MOL began running
13. maximum size of control stack
14. number of words on control stack in use
15. maximum size of control stack(s) ever reached
16. number of slots for top-level LVALs
17. number of top-level LVALs existing
18. number of slots for GVALs in global vector
19. number of GVALs existing
20. number of slots for TYPEs in TYPE vector
21. number of TYPEs existing
22. number of words of immovable garbage-coJJected storage
28. number of words of immovable storage unused
24. size of largest unused contiguous immovable-storage block
25. number of words on internal stack
26. number of words on internal stack in use
27. maximum size of internal stack ever reached

I

22.8. GC-HON

<GC-MON pred)

195

("garbage-collector monitor") determines whether or not the interpreter wiJJ hereafter print
information on the console when a garbage colJection starts and finishes. according to whether or
not its argument is true. It returns the previous state. CaJJing it with no argument returns the
current state. The initial state is false.

When typing is enabled. the garbage collector prints. when it starts:

G IN reason subr-that-caused:atom

and. when it finishes:

GOUT seconds-needed

22.7 - 22.S Storage Management

196

22.9. Related Subroutines

Two SUBRs. described next. use only part of the garbage-coUector algorithm. in order to find all
pointers to an object. GC-DUMP and GC-REAO. as their names imply. also use part in order to
translate between MDL objects and binary representations thereof.

22.9.1. SUBSTITUTE

<SUBSTITUTE Mw:any old:Bny>

returns old. after cau.sing a miniature garbage coJJection to occur. during which aU references to old
are changed 50 as to refer to new. Neither argument can be of PRIHTYPE STRING or BYTES or lOCO
or live on the control stack. unless both are of the same PRIMTYPE. One TYPE name cannot be
.substituted for another. One of the few legitimate uses for it is to substitute the "right" ATOM for
the "wrong" one. after OBLISTs have been in the wrong state. This is more or le55 the way ATOMs are
impurified. It is also useful for unlinking RSUBRs. SUBSTITUTE returns old as a favor: unless you
hang onto old at that point. it will be garbage-coUected.

22.9.2. PURIFY

<PURIFY any-l ••• any-n>

return.s i15 last argument. after causing a miniature garbage collection that results in all the
arguments becoming pure and sharable. and ignored afterward by the garbage collector. No
argument can live on the control stack or be of PRIMTYPE PROCESS or lOCO or ASOC. Sharing
between jobs or forks actuaIJy occurs after a SAVE. if and when the SAVE file is RESTOREd.

22.9 • 22.9.2 Storage Management

197

Chapter 23. MDL as an ITS Job

This chapter treats MOL considered as executing in an ITS job, and interactions between MOL and
other ITS jobs. See also section 21.10.11. Unless otherwise indicated, none of the features in this
chapter is available under TENEX.

23.1. TIME

This SUBR is available under TEN EX. TIME takes any number of arguments, which are evaluated
but ignored, and returns a FLOAT giving the number of seconds of CPU time MOL has used so far.
It is often used in debugging to examine the values of its arguments, by having MOL's superior job
or fork (say, DDT) plant a breakpoint in the code for TIME.

23.2. UNAME

<UNAME> returns a STRING of up to six characters which is the "user name" (login identification) of
MOL's job. The characters belong to the "sixbit" or "printing" subset of ASCII, namely those
between <ASCII -40-> and <ASCII l1li137l1li> inclusive.

23.3. JNAME

<JNAME> returns a "sixbit" STRING of up to six characters which is the "job name" of MOL's job.

23.4. LOGOUT

<LOGOUT>

attempts to log out the job in which it is executed. It will succeed only if the MOL is the top-level

23·23.4 MOL as an ITS Job

198

job. that is. it is running disowned or as a daemon. If it succeeds. it of course never returns. If it
does not. it returns #FALSE ().

23.5. VALRET

<VALRET string>

("value return") seldom returns. It passes control back up the ITS job tree to the superior of MDL.
passing string as a message to that superior. If it does return. the value is IFALSE ().

23.6. QUIT

<QUIT>

causes your MDL to die in an orderly manner. Under ITS. it is equivalent to <VALRET • :KILL • >.
Under TEN EX. <QUIT> is equivalent to a control-C signal. and control passes to the superior fork.

23.7. DEMSIG

<DEMSIG daemon:string>

signals to ITS that the daemon named by its argument should run now. It returns T if the daemon
exists, IFALSE () otherwise.

23.8. Inter- job Communication

The IPC ("interprocess communication") device is treated as an 1/0 device by ITS but not explicitly
so by MDL; that is. it is never OPENed. It allows MDL to communicate to other ITS jobs by means
of sending and receiving messages. A job identifies itself as sender or recipient of a message with
an ordered pair of "sixbit" STRINGs, which are often but not always <UNAME> and <JNAME>. A
message has a "body" and a "type".

23.8.1. SEND and SEND-WAIT

<SEND othernl othern2 body type mynamel myname2>

23.4 - 23.S.1 MDL as an ITS Job

199

<SEND-WAIT othernl othern2 body type mynamel myname2>

both send an IPC message to any job that is listening for it as othernl othern2. body must be either
a STRING, or a UVECTOR of objects of PRIMTYPE WORD. type is an optional FIX, with default O. which
is part of the information the other guy receives. The last two arguments are from whom the
message is to be sent. These are optional and default to <UNAME> and <JNAME> respectively. SEND
returns a FALSE if no one is listening. while SEND-WAIT hangs until someone wants it. Both return T
if someone accepts the message.

23.8.2. The "IPC" Interrupt

When your MDL job receives an IPC message. "IPC" occurs (chapter 21). A handler is called with
either four or six arguments gleaned from the received message. body. type. othernl. and othern2 are
always supplied. mynamel and myname2 are supplied only if they are not this jOb's <UNAME> and
<JNAME>.

There is a default HANDLER for the "IPC" interrupt, with a handler named IPC-HANDLER and 0 in the
process slot. The handler prints out on the console the body, whom it is from, the type if not O. and
whom it is to if not <UNAME> <JNAME>. If the type is 1 and the body is a STRING. then. after the
message information is printed out. the STRING is PARSEd and EVALuated.

23.8.3. IPC-OFF

< IPC-OFF > stops all listening on the IPC device.

23.8.4. IPC-ON

<IPC-ON mynamel myname2>

causes listening on the IPC device as mynamel myname2. If no arguments are provided. listening is
on <UNAME> <JNAME>. When a message arrives. "IPC" occurs.

MDL is initially listening as <UNAME> <JNAME> with the default HANDLER set up on the "IPC"
interrupt with a priority of 1.

23.8.1 • 23.8.4 MDL as an ITS Job

200

Chapter 24. Efficiency and Tastefulness

24.1. Efficiency

Actually. you make MDL programs efficient by thinking hard about what they really make the
interpreter do. and making them do less. Some guidelines. in order of decreasing expense:

(1) Free storage is expensive.
(2) Calling functions is expensive.
(3) PROG and REPEAT are expensive.

Explanation:

(1) Unnecessary use of free storage (creating needless LISTs. VECTORs, UVECTORs. etc.) will cause the
garbage collector to run more often. This is expensive!! A fairly large MDL (for example. 60 000
J6..bit words) can take ten seconds of PDP-IO CPU time to garbage-collect. Be especially wary of
constructions like (0). Every time that is evaluated. it creates a new one-element LIST; it is too easy
to write such things when they aren't reaUy necessary. Unless you are doing PUTs or PUTRESTs on it,
use 1(0) instead.

(2) Sad, but true. Also generally ignored. If you call a function only once, or if it is short (Jess than
one line). you are much better off in speed if you substitute its body in by hand. On the other
hand. you may be much worse off in modularity. There are techniques for combining several
FUNCTIONs into one RSUBR (with RSUBR-ENTRYs), either during or after compilation, and for
changing FUNCTIONs into MACROs.

(3) PROG is almost never necessary. given (a) "AUX" in FUNCTIONs; (b) the fact that FUNCTIONs can
contain any number of FORMs; (c) the fact that COND clauses can contain any number of FORMs; and
(d) the fact that new variables can be generated and initialized by REPEAT.

By the way. REPEAT is faster than GO in a PROG. The <GO x> FORM has to be separately interpreted.
right? In fact, if you organize things properly you very seldom need a GO; using GO is generally
considered "bad style", but in some cases it's needed. Very few.

In many cases, a REPEAT can be replaced with a MAPF or MAPR, or an ILlST, IVECTOR, etc. of the form

24 - 24.1 Efficiency and Tastefulness

201

<ILIST .N '<SET X <+ .X 1»

which generates an N-element lIST of successive numbers starting at X+l.

Whether a program is interpreted or compiled, the first two considerations mentioned above hold:
garbage collection and function calling remain expensive. Garbage collection is. clearly. exactly the
same. Function calling is relatively more expensive. However. the compiler careth not whether you
use REPEAT. GO, PROG. ILIST, MAPF, or whatnot: it all gets compiled into practically the same thing.
However. the REPEAT or PROG will be slower if it has an ACTIVATION that i5 SPECIAL or used other
than by RETURN or AGAIN.

24.1.1. Example

There follows an example of a FUNCTION that does many things wrong. It is accompanied by
commentary. and two better versions of the same thing. (This function actually occurred in
practice. Needless to say. names are withheld to protect the guilty.)

Blunt comment: this is terrible. Its purpose is to output the characters needed by a graphics console
to draw lines connecting a set of points. The points are specified by two input lists: X values and Y
values. The output channel is the third argument. The actual characters for each line are returned
in a LIST by the function TRANS.

<DEFINE PLOTVDSK (X Y CHN "AUX" L LIST)

Comments:

<COND «NOT <==1 <SET L <LENGTH .X»<LENGTH .Y> »
<ERROR "LENGTHS NOT EQUAL"»>

<SET LIST (29»
<REPEAT «N 1»

<SET LIST (!.LIST !<TRANS <.N .X> <.N .Y»»
<COND «G1 <SET N <+ .N 1» .L><RETURN .N»> >

<REPEAT «N 1) (ll <LENGTH .LIST»)
<PRINC <ASCII <.N .LIST» .CHN>
<COND «G? <SET N <+ .N 1» .Ll>

<RETURN "DONE"»> »

(1) LIST is only temporarily necessary. It is just created and then thrown away.

(2) Worse. the construct (!. LIST! <TRANS ••• » copies the previous elements of LIST every time it
is executed!!!

(3) Indexing down the elements of LIST as in <.N • LIST> takes a long time. if the LIST is long. <3
•.. > or (4 ••• > is not worth worrying about, but <10 ••• > is, and <100 .•• > takes quite a while.
Even if the indexing were not phased out. the compiler would be happier with <NTH . LIST • N>.

24.1 - 24.1.1 Efficiency and Tastefulness

202

(4) The variable CHN is unnecessary if OUTCHAN is bound to the argument CHANNEL

(5) It is tasteful to call ERROR in the same way that F /SUBRs do. This includes using an ATOM from
the ERRORS OBLIST (if one is appropriate) to tell what is wrong. and it includes identifying yourself.

So. do it this way:

(DEFINE PLOTVDSK (X Y OUTCHAN)
IDECL «OUTCHAN) <SPECIAL CHANNEL»
<COND «NOT <==? <LENGTH .X> <LENGTH .Y»>

<ERROR VECTOR-LENGTHS-DIFFER!-ERRORS PLOTVDSK»>
<PRINC <ASCII 29»
(REPEAT ()

(COND «EMPTY? .X> <RETURN "DONE"»>
(REPEAT «OL <TRANS <1 .X> <1 .V»»

<PRINC <ASCII <1 .OL»>
<COND «EMPTY? <SET OL <REST .OL»>

<RETURN» »
<SET X <REST .X»
<SET Y <REST .Y»»

Of course, if you know how long is the LIST that TRANS returns. you can avoid using the inner
REPEAT loop and have explicit PRINCs for each element. This can be done even better by using
HAPF. as in the next version. which does exactly the same thing as the previous one. but uses HAPF to
do the RESTing and the end conditional:

<DEFINE PLOTVDSK (X Y OUTCHAN)
#DECL «OUTCHAN) <SPECIAL CHANNEL»
<COND «NOT <==? <LENGTH .X> <LENGTH .Y»>

<ERROR VECTOR-LENGTHS-DIFFER!-ERRORS PLOTVDSK»>
<PRINC <ASCII 29»
(MAPF <>

#FUNCTION «XE YE)

.X

.Y>
IIDONEII>

<MAPF <> #FUNCTION «T) <PRINC <ASCII .T») <TRANS .XE .YE»)

24.1.1 Efficiency and Tastefulness

203

24.2. Creating a LIST in Forward Order

If you must create the elements of a LIST in sequence from first to last, you can avoid copying
earJier ones when adding a later one to the end. One way is to use MAPF or MAPR or STACKFORM with
a first argument of ,LIST: the elements are put on the control stack rather than in free storage,
ulltil the final can to LIST. If you know how many elements there will be. you can put them on the
control stack yourself. in a TUPLE built for that purpose. Another way is used when REPEAT is
necessary:

<REPEAT «FIRST (T» (LAST .FIRST) ..•)
10ECL «VALUE FIRST LAST) LIST ...)

<SET LAST <REST <PUTREST .LAST (.NEW»»

<RETURN <REST .FIRST»
...)

Here. • LAST always points to the current last element of the LIST. Because of the order of
evaluation, the <SET LAST •.• > could also be written (PUTREST • LAST (SET LAST (. NEW)>>.

24.3. Read-only Free Variables

If a Function uses the value of a free variable «GVAL unmanifest:atom> or <LVAL special:atom»
without changing it, the compiled version may be more efficient if the value is assigned to a
dummy UNSPECIAL ATOM in the Function's "AUX" Jist. This is true because an UNSPECIAL ATOM gets
compiled into a slot on the control stack, which is accessible very quickly. The tradeoff is probably
worthwhile if a special is referenced more than once, or if an unmanifesf is referenced more than
twice. Example:

<DEFINE MAP-LOOKUP (THINGS "AUX" (DB ,DATA-BASE»
IDECL «VALUE) VECTOR (THINGS DB) <UNSPECIAL <PRIMTYPE LIST»)
<MAPF ,VECTOR (FUNCTION (T) (MEMQ .T .OB» .THINGS»

24.4. Global and Local Values

In the interpreter the sequence , X • X , X • X is slower than , X , X • X • X because of interference
between the GVAL and LVAL mechanisms (appendix 1). Thus it is not good to use both the GVAL and
LVAL of the same ATOM frequently, unless references to the LVAL will be compiled away (made into
control stack references).

24.2 - 24.4 Efficiency and Tastefulness

204

24.5. Making Offsets for Arrays

It is often the case that you want to attach some meaning to each element of an array and access it
independently of other elements. Firstly. it is a good idea to use names (ATOMs) rather than integers
(FIXes) for offsets into the array. to make future changes easier. Secondly. it is a good idea to use
the GVAls of the name ATOMs to remember the actual FIXes. so that the ATOMs can be MANIFEST for
the compiler's benefit. Thirdly. to establish the GVALs. both the interpreter and the compiler wil) be
happier with <SETG name fix> rather than (DEFINE name (X) (fix • X» for read-only elements.

24.6. Tables

There are several ways in MOL to store a table, that is, a collection of (names and) values that will
be searched. Unsurprisingly. choosing the best way is often dictated by the size of the table and/or
the nature of the (names and) values.

For a small table. the names and values can be put in (separate) structures - the choice of LIST or
array being determined by volatility and Iimitability _. which are searched using MEMQ or MEMBER.
This method is very space-efficient. If the table gets larger, and if the elements are completely
orderable. a (uniform) vector can be used. kept sorted. and searched with a binary search.

For a large table. where reasonably efficient searches are required. a hashing scheme is probably
best. Two methods are available in MOL: associations and OBLISTs.

In the first method. PUTPROP and GETPROP are used. which are very fast. The number of hashing
buckets is fixed. Duplicates are eliminated by ==7 testing. If it is necessary to use =? testing, or to
find all the entries in the table. you can duplicate the table in a LIST or array. to be used only for
those purposes.

In the second method. INSERT and LOOKUP on a specially-built OBLIST are used. (If the names are
not STRINGs, they can be converted to STRINGs using UNPARSE, which takes a little time.) The
number of hashing buckets can be chosen for best efficiency. Duplicates are eliminated by =?
testing. MAPF/R can be used to find all the entries in the table.

24.7. Nesting

The beauty of deeply-nested control structures in a single FUNCTION is definitely in the eye of the
beholder. (PPRINT, a preloaded RSUBR. finds them trying. However, the complier often produces
better code from them.) If you don't like excessive nesting. then you will agree that

<SET X ... >
<COND «07 .X> •••) ..• >

24.5 - 24.7 Efficiency and Tastefulness

looks better than

(COND «01 <SET X ... » .••) .•• >

and that

(REPEAT ...
(COND

•.. >

looks better than

(REPEAT
(COND

••• >

(.•• (RETURN ... »>

(•.• <RETURN ..• »
(ELSE ... »

You can see the nature of the choices. Nesting is stiJJ and aJl better than GO.

205

206

Appendix 1. A Look Inside

This appendix tells about the mapping between MDL objects and PDP·tO storage -- in other words.
the way things look ·on the inside". None of this information is essential to knowing how to
program in MDL. but it does give some reasons for capabilities and restrictions that otherwise you
have to memorize. The notation and terminology get a little awkward in this discussion. because we
are in a twilight zone between the worlds of MDL objects and of bit patterns. In general the words
and phrases appearing in diagrams refer to bit patterns not MOL objects. A lower-case word (like
"tuple; refers to the storage occupied by an object of the corresponding PRIMTYPE (like TUPLE).

First some terminology needs discussion. The sine qua non of any MOL object is a pair of 36-bit
computer words. In general. lists consist of pairs chained together by pointers (addresses). and
vectors consist of contiguous blocks of pairs. ==1 essentially tests two pairs to see whether they
contain the same bit patterns.

The first (lower-addressed) word of a pair is called the TYPE word. because it contains a numeric
TYPE code that represents the object's TYPE. The second (higher-addressed) word of a pair is called
the value word, because it contains (part of or the beginning of) the "data part" of the object. The
TYPE word (and sometimes the value word) is considered to be made of a left half and a right half.
We will picture a pair like this:

I TYPE I I
I - - - - - - - - - - - - - - - I
I value I

where a vertical bar in the middle of a word means the word's halves are used independently. You
can see that the TYPE code is confined to the left half of the TYPE word. (Half-)words are sometimes
subdivided into fields appropriate for the context; fields are also pictured as separated by vertical
bars. The right half of the TYPE word is used for different purposes depending on the TYPE of the
object and actual location of the value.

Actually the IS-bit TYPE field is further decoded. The high-order (leftmost) bit is the mark bit. used
exclusively by the garbage collector when it runs. The next two bits are monitor bits. used to cause
"READ" and "WRITE" interrupts on read and write access to the pair. The next bit is used to
differentiate between list elements and vector dope words. The next bit is unused but could be used
in the future for an "execute" monitor. The remaining 13 bits specify the actual TYPE code. What
CHTYPE does is to copy the pair and put a new TYPE code in the new pair.

Each data TYPE (predefined and NEWTYPEs) must belong to one of about 25 "storage allocation
classes" (roughly corresponding to MOL PRIMTYPEs). These classes are characterized primarily by
the manner in which the garbage collector treats them. Some of these classes will now be described.

Appendix 1

207

"One Word"

This class includes all data that are not pointers to some kind of structure. All external (program
available) TYPEs in this class are of PRIMTYPE WORD. Example:

1 FIX 1 0 I
1 - - - - - - - - - - - - - - - 1
I 105 I

"Two Word"

The members of this class are a11 IS·bit pointers to Jist elements. All external TYPEs in this class are
of PRIMTYPE LIST. Example:

1 LIST I 0 I
1---------------1
1 0 1 pointer 1

where pointer is a pointer to the first list element. If there are no elements, pointer is zero; thus
empty objects of PRIMTYPE LIST are ==7 if their TYPEs are the same.

awo N Word-

Members of this class are all "counting pointers" to blocks of two·word pairs. The right half of a
counting pointer is an address, and the left half is the negative of the number of as·bit words in the
block. (This format is tailored to the PDP-lO AOBJN instruction.) The number of pairs in the block
(LENGTH) is half that number. since each pair is two words. All external TYPEs in this class are of
PRIMTYPE VECTOR. Example:

VECTOR o
J ---------------1

-2 l111 1ength pointer

where 1 en gth is the LENGTH of the VECTOR and po inter is the location of the start (the element
selected by an NTH argument of 1) of the VECTOR.

Appendix 1

208

"N Word"

This class is the same as the previous one, except that the block contains objects all of the sa me
TYPE without individual TYPE words. The TYPE code for all the elements is in vector dope words.
which are at addresses just larger than the block itself. All external TYPEs in this class are of
PRIHTYPE UVECTOR. Example:

I UVECTOR I 0 I
I - - - - - - - - - - - - - - - I
I -length I pointer I
--------------------------------.

where length j6 the LENGTH of the UVECTOR and pointer point, to the beginning of the UVECTOR.

"Byte String· and "Character String"

These two classes are almost identical. Byte strings are byte pointers to strings of arbitrary-size
bytes. PRIHTYPE BYTES is the only member of this class. Character strings are byte pointers to
strings of ASCII characters. PRIMTYPE STRING is the only member of this class. Both of these
classes consist of a length and a PDP-IO byte pointer. In the case of character strings. the byte-size
field in the byte pointer is always seven bits per byte (hence five bytes per word). Example:

I STRING I length I
I - - - - - - - - - - - - - - - I
I byte-pointer I

where length is the LENGTH of the STRING (in bytes) and byte-pointer points to a byte just before
the beginning of the string (an ILDB instruction is needed to get the first byte). A newly-created
STRING always has *Ol0700 lll in the left half of byte-pOinter. Unless the string was created by
SPNAME. byte-pOinter points to a uvector, where the elements (characters) of the STRING are stored.
packed together five to a word.

"Frame"

This class gives the user program a handle on its control and variable-access structures. All external
TYPEs in this class are of PRIMTYPE FRAME. Three numbers are needed to designate a frame: a
unique IS-bit identifying number, a pointer to the frame's storage on a control stack, and a pointer
to the PROCESS associated with the frame. Example:

Appendix 1

209

1 FRAME Iprocess-pointerl
1---------------1
1 un1Que-1d I frame-pointer 1

where process-po 1 nter points to the dope words of a PROCESS vector. and un 1 Que- i d is used for
validating (tating LEGAL?) the frame-poi nter. which points to a frame for some Subroutine call on
the control stacie.

A tuple pointer is a counting pointer to a vector on the control stack. It may be a pointer to the
arguments to a Subroutine or a pointer generated by the "TUPLE" declaration in a FUNCTION. Like
objects in the previous class. these objects contain a unique identifying number used for validation.
PRIHTYPE TUPLE is the only member of this class. Example:

1 TUPLE 1 unique-id 1
1---------------1
1 -Z-length 1 pointer 1

Other Storage Classes

The rest of the storage classes include strictly internal TYPEs and pointers to special kinds of lists
and vectors like locatives, ATOMs and ASOCs. A pair for any LOCATIVE except a LOCO looks like a
pair for the corresponding structure. except of course that the TYPE is different. A LOCO pair looks
like a tuple pair and needs a word and a half for its value; the un1que-1d refers to a binding on the
control stack or to the "global stack" if zero. Thus LOCOs are in a sense "stack objects" and are more
restricted than other locatives.

Basic Data Structures

Lists

List elements are pairs linked together by the right halves of their first words. The list is
terminated by a zero in the right half of the last pair. For example the LIST (1 Z 3) would look
like this:

Appendix 1

210

1 LIST I 0 I
I - - - - - I ----------- ----------- -----------
1 0 I ------>1 FIX I ------->1 FIX 1 ------->1 FIX 1 0 I
------------- I - - - - I I - - - - I I - - - - I

I 1 I I 2 I I 3 I

The use of pointers to tie together elements explains why new elements can be added easily to a Jist,
how sharing and circularity work. etc. The Jinks go in only one direction through the Jist. which is
why a list cannot be BACKed or TOPped: there's no way to find the RESTed elements,

Since some MDL values require a word and a half for the value in the pair. they do not fit directly
into list elements. This problem is solved by having "deferred pointers·, Instead of putting the
datum directly into the list element. a pointer to another pair is used as the value with the special
internal TYPE DEFER, and the real datum is put in the deferred pair. For example the LIST (1
-hello· 3) would look like this:

I LIST I 0 I
1 - - - - - I ----------- ----------- -----------
I 0 I ------>1 FIX I ------->IDEFERI ------->1 FIX I 0 I
------------- I - - - - I I - - - - I I - - - - 1

I 1 I I I 3 1
----------- I -----------

I
----------- I
ISTRING I 51 <-
I - - - - I
I byte-pntr I

Vectors

A vector is a block of contiguous words. More than one pair can point to the block. possibly at
different places in the block; this is how sharing occurs among vectors, Pointers that are different
arise from REST or GROW/BACK operations. The block is foJJowed by two "dope words", at addressn
just Jarger than the largest address in the block. Dope words have the following format:

Appendix 1

I
I
I

I
1
1

I type 1 grow 1
1---------------1
I length 1 gc 1

The various fields have the following meanings:

211

type - The fourth bit from the left (the "vector bit", 40000 octal) is always one, to distinguish these
vector dope words from a TYPE/value pair.

If the high-order bit is zero. then the vector is a UVECTOR, and the remaining bits specify the
uniform TYPE of the elements. CHUTYPE just puts a new TYPE code in this field. Each element
is limited to a one.word value: clearly PRIMTYPE STRINGs and BYTESes and stack objects can't
go in uniform vectors.

If the high-order bit is one and the TYPE bits are zero. then this is a regular VECTOR.

If the high-order bit is one and the TYPE bits are not all zero. then this is either an ATOM. a
PROCESS. an ASOC, or a TEMPLATE. The special internal format of these objects will be
described a little later in this appendix.

1 ength - The high-order bit is the mark bit. used by the garbage collector. The rest of th is field
specifies the number of words in the block. including the dope words. This differs from the
length given in pairs pointing to this vector, since such pairs may be the result of REST
operations.

grow - This is actually two nine-bit fields. specifying either growth or shrinkage at both the high
and low ends of the vector. The fields are usually set only when a stack must be grown or
shrunk.

gc - This is used by the garbage collector to specify where this vector is moving during
compaction.

Examples (numbers in octal): the VECTOR [1 II bye II 3] looks like:

Appendix 1

212

VECTOR I 0 I
I - - - - - - I

-6 ----------->1 FIX I I
--------------- I - - - - - - - I

I 1 1

1 STRING I 3 I
1-- - - - - - I
I byte pointer I

I FIX I I
I - - - - - - - I
I 3 I

I 440000 1 0 I
I - - - - - - - I
I 10 1 I

The UVECTOR ! [-1 7 -4!] looks like:

I UVECTOR I 0 I
I - - - - - - I -----------------
I -3 I -----------> I -1

7

-4

I 40000+FIX I 0 I
I - - - - - - - I
I 5 I I

Atoms

Internally. atoms are special vector-like objects. An atom contains a value cell (the first two words
of the block. filled in whenever the global or local value of the ATOM is referenced and is not already
there). an OBLIST pointer. and a print name (PNAME), in the following format:

Appendix 1

type bindid

-------------------._------------
pointer-to-value

---------------------------._.---
pointer-to-OBLIST

I
I
I

print-name I
I
I

I (ASCII with NUL padding on end)1

ATOM valid-type
1---------------1

length gc

213

If the type field corresponds to TYPE UNBOUND, then the ATOM is locally and globally unbound.
(This is different from a pair, where the same TYPE UNBOUND is used to mean unassigned.) If it
corresponds to TYPE LOCI (an internal TYPE), then the value cell points either to the global stack. if
bindid is zero, or to a local control stack. if bindid is non-zero. The bind1d field is used to verify
whether the local value pointed to by the value cell is valid in the current environment. The
pointer-to-OBLIST is either a counting pointer to an oblist (uvector). a positive offset into the
"transfer vector" (for pure ATOMs). or zero, meaning that this ATOM is not on an OBLIST. The va 1 id
type field tens whether or not the ATOM represents a TYPE and if so the code for that TYPE: grow
values are never needed for atoms.

Associations

Associations are also special vector-like objects. The first six words of the block contain TYPE/value
pairs for the ITEM, INDICATOR and AVALUE of the ASOC. The next word contains forward and
backward pointers in the chain for that bucket of the association hash table. The last word
contains forward and backward pointers in the chain of aU the associations.

Appendix 1

214

I ITEM I
I - - - - - - - - - - - - - - - I
I pair I

I INDICATOR I
I - - - - - - - - - - - - - - - I
I pair I

I AVALUE I
I - - - - - - - - - - - - - - - I
I pair I

bucket-cha1n pointers

association-chain pOinters

I ASOC I 0 I
I - - - - - - - - - - - - - - - I
I 12 octa 1 I gc I

Processes

A PROCESS vector looks exactly like a vector of TYPE/value pairs. It is different only in that the
garbage collector treats it differently from a normal vector, and it contains extremely volatile
information when the PROCESS is RUNNING.

Templates

In a template, the number in the type field (left half of first dope word) identifies to which "storage
allocation class" this TEMPLATE belongs, and it is used to find PDP.to instructions in internal tables
(frozen uvectors) for performing LENGTH, NTH, and PUT operations on any object of this TYPE. The
programs to build these tables are not part of the interpreter, but the interpreter does know how to
use them properly. The compiler can put these instructions directly in compiled programs if a
TEMPLATE is never RESTed; otherwise it must let the interpreter discover the appropriate instruction.
The value word of a template pair contains, not a counting pointer, but the number of elements
that have been RESTed off in the left half and a pointer to the first dope word in the right half.

Appendix 1

215

The Control Stack

Accumulators with symbolic names AB. TB. and TP are all pointers into the RUNNING PROCESS's
control stack. AS ("argument base") is a pointer to the arguments to the Subroutine now being run.
It is set up by the Subroutine-call mediator, and its old value is always restored after a mediated
Subroutine calJ returns. TS ("temporaries base") points to the frame for the running Subroutine and
also serves as a stack base pointer. The TB pointer is really all that is necessary to return from a
Subroutine - given a value to return, for example by ERRET -- since the frame specifies the entire
state of the calling routine. TP ("temporaries pointer") is the actual stack pointer and always points
to the current top of the control stack.

While we're on the subject of accumulators, we might as well be complete. Each accumulator
contains the value word of a pair, the corresponding TYPE words residing in the RUNNING PROCESS
vector. When a PROCESS is not RUNNING (or when the garbage collector is running), the accumulator
contents are stored in the vector, so that the Objects they point to look like elements of the PROCESS
and thus are not garbage-collectible.

Accumulatofs A. B. C, 0, E and 0 are used almost entirely as scratch accumulators, and they are
not saved or restored across Subroutine calls. Of course the interrupt machinery always saves these
and all other accumulators. A and B are used to return a pair as the value of a Subroutine call.
Other than that special feature, they are just like the other scratch accumulators.

Hand R are used in running RSUBRs. M is always set up to point to the start of the RSUBR's code,
which is actually just a uniform vector of instructions. All jumps and other references to the code
use M as an index register. This makes the code location-insensitive, which is necessary because the
code uvector will move around. R is set up to point to the vector of objects needed by the RSUBR.
This accumulator is necessary because Objects in garbage-collected space can move around, but the
pointers to them in the reference vector are always at the same place relative to its beginning.

FRH is the internal frame pointer, used in compiled code to keep track of pending Subroutine calls
when the control stack is heavily used. P is the internal-stack pointer, used primarily for internal
calls in the interpreter.

One of the nicest features of the MOL environment is the uniformity of the calling and returning
sequence. All Subroutines -- both built-in F/SUBRs and compiled RSUBR(-ENTRY)s -- are called in
exactly the same way and return the same way. Arguments are always passed on the control stack
and results always end up in the same accumulators. For efficiency reasons, a lot of internal calls
within the interpreter circumvent the calling sequence. However, all calls made by the interpreter
when running user programs go through the standard calling sequence.

A Subroutine call is initiated by one of three UUOs (PDP-10 instructions executed by software
rather than hardware). MCALL ("MOL call") is used when the number of arguments is known at
assemble or compile time, and this number is less than 16. QCALL ("quick calli may be used if. in
addition. an RSUBR(-ENTRY) is being called that can be called "quickly" by virtue of its having

Appendix 1

216

special information in its reference vector. ACALL ("accumulator call") is used otherwise. The
general method of calling a Subroutine is to PUSH (a PDP-lO instruction) pairs representing the
arguments onto the control stack via TP and then either (1) MCALL or QCALL or (2) put the number of
arguments into an accumulator and ACALL. Upon return the object returned by the Subroutine will
be in accumulators A and S, and the arguments will have been POPped off the control stack.

The call mediator stores the contents of P and TP and the address of the calling instruction in the
current frame (pointed to by TB). It also stores MDL's "binding pointer" to the topmost binding in
the contra) stack. (The bindings are linked together through the control stack so that searching
through them is more efficient than looking at every object on the stack.) This frame now specifies
the entire state of the caller when the call occurred. The mediator then builds a new frame on the
control stack and stores a pointer back to the caller's frame (the current contents of TB), a pointer to
the Subroutine being called, and the new contents of AB, which is a counting pointer to the
arguments and is computed from the information in the MCALL or QCALL instruction or the ACAll
accumulator. TB is then set up to point to the new frame, and its left half is incremented by one.
making a new un 1 que-1 d. The mediator then transfers control to the Subroutine.

A control stack frame has seven words as shown:

ENTRY called-addr

unique-id prev frame

argument pointer

saved binding pOinter

saved P

saved TP

saved calling address

The first three words are set up during the call to the Subroutine. The rest are filled in when this
routine calls another Subroutine. The left half of TB is incremented every time a Subroutine call
occurs and is used as the unique-id for the frame, stored in frame and tuple pairs as mentioned
before. Obviously this id is not strictly unique. since each 256K calls it wraps around to zero. The
right half of TB is always left pointing one word past the saved-calling-address word in the frame.
TP is also left pointing at that word, since that is the top of the control stack at Subroutine entry.
The arguments to the called Subroutine are below the frame on the control stack (at lower storage
addresses). and the temporaries for the called Subroutine are above the frame (at higher storage
addresses). These arguments and temporaries are just pairs stored on the control stack while needed:
they are all that remain of UNSPECIAL values in compiled programs.

Appendix 1

The following figure shows what the control stack might look like after several Subroutine calls.

I
I

I
I

I

,I args for 51
I

I frame for 5.1
----------------- (--

I
I temps for 51 I
I I
----------------- I

I
args for 52 I

I
----------------- I
I frame for 52

(------
I temps for 52
I

args for 53

I frame for 53

temps for 53

(top)

I
I
I
I
I
I

217

The above figure shows the frames an linked together through the control stack (the "execution
path"), 50 that it is easy to return to the caJler of a given Subroutine (ERRET or RETRY).

Subroutine exit is accomplished simply by the call mediator, which loads the right half of TB from
the previous frame pointer, restores the "binding pointer", P, and TP, and transfers control back to
the instruction following the saved calling address.

Appendix 1

218

Variable Bindings

All local ATOM values are kept on the control stack of the PROCESS to which they are local. As
described before. the atom contains a word that points to the value on the control stack. The
pointer is actuany to a six-word "binding block" on the control stack. Binding blocks have the
foJJowing format:

I BIND or UBIND I prev

pointer to ATOM

I value I
I - - - - - - - - - - - - - - - I
I pair I

decl unique-id

previous-binding

where:

BIND means this is a binding for a SPECIAL ATOM (the only kind used by compiJed programs).
and UBIND means this is a binding for an UNSPECIAL ATOM -- for SPECIAL checking by the
interpreter;

prev points to the closest previous binding block for any ATOM (the "acce55 path" -- UNWIND
objects are also linked in this chain);

decl points to a OECL associated with this value. for SET(LOC) to check;

un i que- i d is used for validation of this block; and

previous-binding points to the closest previous binding for this ATOM (used in unbinding).

Bindings are generated by an internal subroutine called SPECBINO (name comes from SPECIAL). The
calJer to SPECBIND PUSHes consecutive six-word blocks onto the control stack via TP before caJJing
SPECBINO. The first word of each block contains the TYPE code for ATOM in its left half and an ones
in its right half. SPECBINO uses this bit pattern to identify the binding blocks. SPECBINO's caJler
also fills in the next three words and leaves the last two words empty. SPECBIND fills in the rest and
leaves the "binding pointer" pointing at the topmost binding on the control stack. SPECBIND also
stores a pointer to the current binding in the value cen of the atom.

Appendix 1

219

Unbinding is accomplished during Subroutine return. When the previous frame is being restored.
the call mediator checks to see if the saved "binding pointer" and the current one are different; if
they are, SPECSTORE is called. SPECSTORE runs through the binding blocks. restoring old value
pointers in atoms until the "binding pointer" is equal to the one saved in the frame.

Obviously variable binding is more complicated than this. because ATOMs can have both local and
global values and even different local values in different PROCESSes. The solution to all of these
additional problems lies in the b1nd1d field of the atom. Each PROCESS vector also contains a
current bindid. Whenever an ATOM's local value is desired, the RUNNING PROCESS's bindid is
checked against that of the atom: if they are the same, the atom points to the current value; if not.
the current PROCESS's control stack must be searched to find a binding block for this ATOM. This
binding scheme might be caUed "shallow binding". The searching is facilitated by having all
binding blocks linked together. Accessing global variables is accomplished in a similar way. using a
VECTOR that is referred to as the "global stack". The global stack has only an ATOM and a value slot
for each variable, since global values never get rebound.

EVAl with respect to a different environment causes some additional problems. Whenever this kind
of EVAl is done, a brand new bindid is generated, forcing all current local value cells of atoms to
appear invalid. Local values must now be obtained by searching the control stack, which is
inefficient compared to just pulling them out of the atoms. (The greatest inefficiency occurs when
an ATOM's lVAl is never accessed twice in a row in the same environment.) A special block is built
on the control stack and linked into the binding-block chain. This block is called a "skip block" or
"environment splice", and it diverts the access path to the new environment, causing searches to
become relative to this new environment.

Appendix 1

220

Appendix 2. Predefined Subroutines

The folJowing is a very brief description of aU the primitives currently available in MOL. These
descriptions are in no way to be considered a definition of the effects or values produced by the
primitives. They just try to be as complete and as accurate as is possible in a single-statement
description. However. because of the complexity of most primitives. many important defaults and
restrictions have been omitted.

A description is given in this format:

NAME
rsubr-decl
English description

The NAME is just the ATOM that is used to refer to the primitive. The rsubr-decl is what would go
inside an HRSUBR DECL" (chapter 14) for the primitive. One special convention is used: an element
of a DECL Pattern enclosed in hyphens (for example -STRING-) means that that element only is
optional. This convention is handy for F/SUBRs that take flexible argument Patterns. Even
though all primitives return a value. some English descriptions only mention the side effects
produced by a primitive. because these primitives are most often used for this effect rather than the
value.

"VALUE- (OR FIX FLOAT)
MTUPLE- (TUPLE [REST (OR FIX FLOAT>]>
Arithmetic: multiplication

+
·VALUE- (OR FIX FLOAT)
"TUPLE- <TUPLE [REST (OR FIX FLOAD]>
Arithmetic: addition

·VALUE- <OR FIX FLOAT>
-TUPLE- <TUPLE [REST <OR FIX FLOAT>]>
Arithmetic: subtraction

I
"VALUE- <OR FIX FLOAT>
-TUPLE- <TUPLE [REST <OR FIX FLOAT>]>
Arithmetic: division

Appendix 2

01
"VALUE" (OR FALSE 'T)
(OR FIX FLOAT)
Predicate: equality to number zero

11
"VALUE" (OR FALSE 'T)
(OR FIX FLOAT)
Predicate: equality to number one

ISTEP
"VALUP PROCESS
PROCESS
Cause a proceu to enter single-step mode

==1
"VALUE" (OR 'T FALSE)
ANY ANY
Predicate: "exact" equality

=1
"VALUE" (OR 'T FALSE)
ANY ANY
Predicate: "structural" equality

ASS
-VALUE- (OR FIX FLOAT)
(OR FIX FLOAT)
Arithmetic: absolute value

ACCESS
"VALUE" CHANNEL
CHANNEL FIX
Randomly access disk file etc.

ACTIVATE-CHARS
"VALUE" STRING
"OPTIONAL" STRING
Set or inspect interrupt characters for console typing (TEN EX only)

AGAIN
"VALUE" ANY
"OPTIONAL" ACTIVATION
Restart a given activation block

Appendix 2

221

222

ALLTYPES
"VALUE" <VECTOR [REST ATOM]>
Return a vector of all type names

AND
-VALUED <OR FALSE ANY>
-ARGS· LIST
Logical: "and" of truth values. evaluated one at a time by the Subroutine

AND?
IIVALUE" <OR FALSE ANY>
-TUPLE" TUPLE
Logical: "and" of truthvaJues • .evaJuated at caU time

ANDB
"VALUEII WORD
"TUPLE" <TUPLE [REST <PRIMTYPE WORD>]>
Bitwise "and" of words

APPLICABLE?
-VALUE- <OR IT FALSE>
ANY
Predicate: is object applicabJe

APPLY
"VALUE" ANY
APPLICABLE "TUPLE" TUPLE
Apply first argument to the rest of them

APPLYTYPE
"VALUE" <OR ATOM APPLICABLE FALSE>
ATOM "OPTIONAL" <OR ATOM APPLICABLE>
Specify or return how a data type is applied

ARGS
"VALUE" TUPLE
<OR FRAME ACTIVATION ENVIRONMENT PROCESS>
Return arguments of a given previous Subroutine caU

ASCII
"VALUE" <OR CHARACTER FIX>
<OR FIX CHARACTER>
Return character with given ASCII code or vice versa

AppendiX 2

f
ASSIGNED?
"VALUE" <OR IT FALSE>
ATOM "OPTIONALIJ <OR ENVIRONMENT ACTIVATION FRAME PROCESS)
Predicate: is an atom locally assigned

ASSOCIATIONS
"VALUE" <OR ASOC FALSE)
Return the first entry in the association chain

AT
"VALUE" LOCATIVE
STRUCTURED "OPTIONAL" FIX
Return a locative to the Nth element of a structure

ATAN
"VALUE" FLOAT
(OR FIX FLOAT>
Arithmetic: arc tangent

ATOM
"VALUP ATOM
STRING
Create an atom with a given name

AVALUE
"VALUE" ANY
ASOC
Return the "value" field of an association

BACK
"VALUE" <OR VECTOR UVECTOR STRING TEMPLATE>
<OR (PRIMTYPE VECTOR> <PRIMTYPE UVECTOR> <PRIMTYPE STRING> <PRIMTYPE TEMPLATE»

"OPTIONAL" FIX

223

Replace .some elements removed from a non-list structure by RESting and change to primitive data
type

BIND
"VALUE" ANY
"ARGS" <LIST -ATOM- LIST -DECL- ANY)
Execute sequential expressions without providing default activation

BITS
"VALUE" BITS
FIX "OPTIONAL" FIX
Create bit mask for PUTBITS and GETBITS

Appendix 2

224

BLOAT
"VALUEII FIX
"OPTIONAL II FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX
AUocate extra storage temporarily

BLOAT-STAT
·VALUE- (UVECTOR [27 FIX]>
·OPTIONAL· (UVECTOR [27 ANY]>
Give garbage-collector and storage statistics

BLOCK
"VALUE" <OR OBLIST (LIST [REST <OR OBLIST 'DEFAULD]»
(OR OBLIST (LIST [REST <OR OBLIST 'DEFAULT>]»
Create a current path of oblists for READing

BOUND?
"VALUE" (OR 'T FALSE>
ATOM IIOPTIONAL II (OR ENVIRONMENT ACTIVATION FRAME PROCESS)
Predicate: is an atom locally bound

BREAK-SEQ
IIVALUE" PROCESS
ANY PROCESS
Modify execution sequence of another process

BUFOUT
"VALUE" CHANNEL
"OPTIONAL" CHANNEL
Write out aU internal MDL buffers for an I/O channel

BYTES
"VALUE" BYTES
FIX "TUPLE" <TUPLE [REST <PRIMTYPE WORD>]>
Create a byte-string of explicit arguments

BYTE-SIZE
"VALUE" FIX
BYTES
Return size of bytes in a byte-string

CHANLIST
"VALUE" <LIST [REST CHANNEL]>
Return a list of currently open 1/0 channels

Appendix 2

/

CHANNEL
IIVALUEII CHANNEL
IIOPTIONAL" STRING "TUPLE" TUPLE
Create an 1/0 channel

CHTYPE
"VALUEII ANY
ANY ATOM
Make a new object with a given data type from an old one

CHUTYPE
"VALUER <PRIMTYPE UVECTOR?
<PRIMTYPE UVECTOR> ATOM
Change the data type of the elements of a uniform vector

CLOSE
"VALUEII CHANNEL
CHANNEL
Close an I/O channel

CLOSURE
"VALUE" CLOSURE
FUNCTION "TUPLE" <TUPLE [REST ATOM]>
Bind the free variables of a FUNCTION to current values

COND
·VALUE" ANY
IIARGS" <LIST LIST [REST LIST]>
Conditional evaluation of expressions

CONS
·VALUE" LIST
ANY LIST
Add an element to the front of a list

COS
"VALUE II FLOAT
<OR FIX FLOAT>
Arithmetic: cosine

CRLF
"VALUE" IT
"OPTIONAL" CHANNEL
Print a carriage-return and line-feed on an I/O channel

Appendix 2

225

226

DECL-CHECK
"VALUE" (OR FALSE ANY>
"OPTIONAL" (OR FALSE ANY>
Enable or disable type-declaration checking

DECL?
"VALUE" (OR 'T FALSE>
ANY (OR ATOM (FORM 'QUOTE FORM»
Predicate: does given object match given type declaration

DEFINE
UVALUE" ATOM
ATOM uARGS· (LIST -ATOM- LIST -DECL- ANY>
Set the global value of an atom to a FUNCTION

DEFMAC
"VALUE" ATOM
ATOM uARGSu (LIST -ATOM- LIST -DECL- ANY>
Set the global value of an atom to a MACRO

DEMSIG
"VALUE" (OR IT FALSE>
STRING
Signal an ITS daemon

DISABLE
·VALUE· IHEAOER
IHEADER
Disable an interrupt

DISMISS
"VALUE- ANY
ANY uOPTIONAL" ACTIVATION FIX
Dismiss an interrupt occurrence

DISPLAY
"VALUE" CHANNEL
CHANNEL "OPTIONAL" PICTURE
Display pictures on the E&:S (ITS only)

ECHOPAIR
·VALUE- CHANNEL
CHANNEL CHANNEL
Coordinate 110 channels for echoing characters on rubout

Appendix 2

EMPTY?
·VALUE" (OR IT FALSE)
STRUCTURED
Predicate: does a structure have zero elements

ENABLE
·VALUE· IHEADER
IHEADER
Enable an interrupt

ENDBLOCK
·VALUE· (OR OBLIST (LIST (REST <OR OBLIST IDEFAULT>]»
Restore path of obli$u extant before last call to BLOCK

ENTRY-LOC
·VALUE- FIX
RSUBR-ENTRY
Return the offset of an RSUBR-ENTRY

EQVB
·VALUE u WORD
"TUPLE" (TUPLE (REST <PRIMTYPE WORD>]>
Bitwise "equivalence" of words

ERASE
·VALUeu CHANNEL
CHANNEL "OPTIONALu PICTURE
Erase a picture from the E&CS (ITS only)

ERRET
·VALUEu ANY
·OPTIONAL" ANY FRAME
Continue evaluation from the last ERROR or LISTEN or from a given frame

ERROR
IIVALUE" ANY
IITUPLE" TUPLE
Stop and inform user of an error

ERRORS
IIVALUP OBLIST
Return the obJist where error messages are located

Appendix 2

227

228

EVAL
IIVALUE" ANY
ANY IIOPTIONAL II (OR ACTIVATION FRAME ENVIRONMENT PROCESS>
Evaluate an expression in a given environment

EVALTYPE
·VALUE· (OR ATOM APPLICABLE FALSE>
ATOM ·OPTIONAL" <OR ATOM APPLICABLE>
Specify or return how a data type is evaluated

EVENT
uVALUEu IHEADER
(OR STRING ATOM IHEADER> FIX "OPTIONAL" (OR CHANNEL LOCATIVE>
Set up an interrupt

EXP
"VALUE" FLOAT
(OR FIX FLOAT>
Arithmetic: exponentiation to the base "e"

EXPAND
"VALUER ANY
ANY
Evaluate argument (only once if a MACRO is involved) in top-level environment

FILE-LENGTH
·VALUE" FIX
CHANNEL
Return the system-provided file length of an input channel

FILECOPY
"VALUE" FIX
uOPTIONAL" CHANNEL CHANNEL
Copy characters from one channel to another until an EOF on the input channel

FIX
"VALUE" FIX
(OR FLOAT FIX>
Arithmetic: return integer value of a number

FLATSIZE
IIVALUEII <OR FALSE FIX>
ANY FIX IIOPTIONALII FIX
Return number of characters needed to PRINI an object

Appendix 2

FLOAD
"VALUE" '''DONE''
"OPTIONAL" -STRING- -STRING- -STRING- -STRING- (OR OBLIST (LIST [REST (OR OBLIST

'DEFAULT>]»
Read and evaluate all objects in a file

FLOAT
"VALUE" FLOAT
<OR FIX FLOAT>
Arithmetic: return floating value of a number

FORM
"VALUE" FORM
"TUPLE" TUPLE
Create a form of explicit arguments

FRAME
"VALUP FRAME
"OPTIONAL" (OR PROCESS FRAME ACTIVATION ENVIRONMENT>
Return a previous Subroutine call

FREE
"VALUE" <PRIMTYPE STORAGE)
<PRIMTYPE STORAGE)
De-allocate non-garbage-collected storage (archaic) (ITS only)

FREE-RUN
"VALUE" <OR PROCESS FALSE>
PROCESS
Cause a process to leave single-step mode

FREEZE
"VALUE" <OR VECTOR UVECTOR STRING>
<OR <PRIMTYPE VECTOR) <PRIMTYPE UVECTOR) <PRIMTYPE STRING> <PRIMTYPE TUPLE»
Make copy of argument in non-moving garbage-COllected space

FUNCT
"VALUP ATOM
<OR PROCESS FRAME ACTIVATION ENVIRONMENT>
Return Subroutine name of a given .previous Subroutine call

FUNCTION
"VALUE" FUNCTION
"ARGS" <LIST -ATOM- LIST -DECL- ANY>
Create a FUNCTION

Appendix 2

229

230

G=1
"VALUE" (OR IT FALSE>
(OR FIX FLOAT> (OR FIX FLOAT>
Predicate: is first argument greater than or equal to second

G1
"VALUE" (OR IT FALSE>
(OR FIX FLOAT> (OR FIX FLOAT>
Predicate: is first argument greater than second

GASSIGNEO?
-VALUE- (OR IT FALSE>
ATOH
Predicate: is an atom globally assigned

GBOUN01
-VALUE" (OR IT FALSE>
ATOM
Predicate: is an atom globally bound

GC
"VALUE" FIX
"OPTIONAL- FIX (OR FALSE ANY>
Cause a garbage collection and change a garbage-collection parameter

GC-DUMP
"VALUE" (OR ANY (UVECTOR (PRIMTYPE WORD»>
ANY (OR CHANNEL FALSE>
Dump an object so that it can be reproduced exactly

GC-MON
"VALUE" (OR FALSE ANY>
"OPTIONALu (OR FALSE ANY>
Turn garbage-collection monitoring off or on

GC-READ
"VALUE" ANY
CHANNEL "OPTIONAL" ANY
Input an object that was previously GC-DUMPed

GDECL
"VALUE" ANY
"ARGS" (LIST [REST (LIST [REST ATOM]> (OR ATOM FORM>]>
Declare the type/structure of the global value of an atom

Appendix 2

GET
"VALUE" ANY
ANY ANY "OPTIONAL" ANY
Return a given property associated with an item

GET-DECL
·VALUE" <OR ATOM FORM FALSE>
LOCO
Get the type declaration for an atom's value

GETBITS
·VALUE- WORD
<OR <PRIMTYPE WORD> <PRIMTYPE STORAGE» BITS
Return a bit field of a word

GETL
·VALUE" <OR LOCATIVE ANY>
ANY ANY "OPTIONAL" ANY
Return a locative to an association or to an element

GETPL
"VALUE" <OR LOCAS ANY>
ANY ANY ·OPTIONALH ANY
Return a locative to an association

GETPROP
·VALUE· ANY
ANY ANY HOPTIONALH ANY
a more general version of GET

GLOC
·VALUEH LOCO
ATOM HOPTIONALH <OR FALSE ANY>
Return a locative to the global-value cell of an atom

GO
HVALUEu ANY
<OR ATOM TAG)
Go to a tag and continue evaluation from there

GROW
"VALUE" <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR»
<OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR» FIX FIX
Extend the bounds of a vector or uniform vector

Appendix 2

231

232

GUNASSIGN
IIVALUEII ATOM
ATOM
Cause an atom to be globally unassigned

GVAL
IIVALUP ANY
ATOM
Return the global value of an atom

HANDLER
·VALUE- HANDLER
IHEADER (OR HANDLER APPLICABLE> IIOPTIONAL" PROCESS
Create an interrupt handler

HANG
"VALUP ANY
IIOPTIONAL II ANY
Do nothing. interruptibly. forever

IBYTES
·VALUP BYTES
FIX FIX "OPTIONAL" ANY
Create a byte-string of implicit arguments

IFORH
"VALUP FORM
FIX "OPTIONAL II ANY
Create a form of implicit arguments

ILlST
"VALUP LIST
FIX "OPTIONAL II ANY
Create a list of implicit arguments

IMAGE
"VALUE" FIX
FIX IIOPTIONAL" CHANNEL
Send an image-mode character to a channel

IN
IIVALUP ANY
LOCATIVE
Return the object pointed to by a locative

Appendix 2

INDICATOR
"VALUE" ANY
ASOC
Return the "indicatorH field of an association

INSERT
"VALUE" ATOM
<OR ATOM STRING} OBLIST
Add an atom to an oblist

INT-LEVEL
"VALUE" FIX
"OPTIONAL" FIX
Return and/or set current interrupt level

INTERRUPT
"VALUE" <OR 'T FALSE}
<OR IHEADER STRING ATOM) "TUPLE" TUPLE
Cause an interrupt to occur

INTERRUPTS
"VALUE" OBLIST
Return the oblist on which interrupt names are kept

IPC-HANDLER
·VALUE" 'T
<OR STRING UVECTOR STORAGE) FIX STRING STRING "OPTIONAL- STRING STRING
Default handler for "IPC\' (ITS only)

IPC-OFF
·VALUE- 'T
Stop all listening on the IPC device (ITS only)

IPC-ON
"VALUE" 'T
"OPTIONAL" STRING STRING
Listen on the IPC device (ITS only)

ISTORAGE
"VALUE" STORAGE
FIX "OPTIONAL" ANY
Create a non-garbage-collected storage of implicit arguments (archaic)

Appendix 2

233

234

ISTRING
"VALUE" STRING
FIX "OPTIONAL" ANY
Create a string of implicit arguments

ITEM
"VALUE" ANY
ASOC
Return the "item" field of an association

ITUPLE
"VALUE" TUPLE
FIX "OPTIONAL" ANY
Create a tuple (vector on the control stack) of implicit arguments

IUVECTOR
"VALUE" UVECTOR
FIX "OPTIONAL" ANY
Create a uniform vector of implicit arguments

IVECTOR
"VALUE" VECTOR
FIX "OPTIONAL" ANY
Create a vector of implicit arguments

JNAHE
"VALUE" STRING
Return job name of MDL

L=?
"VALUE" (OR IT FALSE)
(OR FIX FLOAT) (OR FIX FLOAT)
Predicate: is first argument less than or equal to second

L?
"VALUE" (OR I T FALSE)
(OR FIX FLOAT) (OR FIX FLOAT)
Predicate: is first argument less than second

LEGAL?
"VALUE" <OR IT FALSE)
ANY
Predicate: Is argument (frame etc.) legal

Appendix 2

LENGTH
"VALUE" FIX
STRUCTURED
Return the number of elements in a structure

LENGTH?
·VALUE· <OR FIX FALSE)
STRUCTURED FIX
Predicate: is length of structure less than or equal to an integer

LINK
"VALUEII ANY
ANY STRING IIOPTIONAL" OBLIST
Create a symbolic link to any object for READing

LIST
"VALUfN LIST
IITUPLE" TUPLE
Create a list of expIlcit arguments

LISTEN
"VALUE" ANY
IITUPLE" TUPLE
Stop and inform user that you are waiting

LLOC
·VALUE- LOCO
ATOM ·OPTIONAL" (OR ENVIRONMENT ACTIVATION FRAME PROCESS)
Return a locative to the local-value cell of an atom

LOAD
"VALUE" I"DONE"
CHANNEL "OPTIONAL" <OR OBLIST (LIST [REST (OR OBLIST 'DEFAULT)]»
Read and evaluate all objects from an I/O channel

LOCATIVE?
"VALUfN <OR FALSE IT)
ANY
Predicate: is object a locative

LOG
uVALUEu FLOAT
<OR FIX FLOAT>
Arithmetic: natural logarithm

Appendix 2

235

236

LOGOUT
"VALUE" FALSE
Log out of ITS (useful for disowned and daemon jobs)

LOOKUP
"VALUE" <OR ATOM FALSE>
STRING OBLIST
Return an atom found on a given oblist

LPARSE
"VALUE" LIST
"OPTIONAL II STRING FIX <OR OSLIST <LIST [REST <OR OBLIST I DEFAULT>]» VECTOR CHARACTER
Return a list of the objects parsed from a string (sections 7.6.6.8. 15.7.2. 17.1.8)

LVAL
"VALUE" ANY
ATOM "OPTIONAL II <OR ENVIRONMENT ACTIVATION FRAME PROCESS)
Return the local value of an atom

MAIN
"VALUE" PROCESS
Return process 1 (the main process)

MANIFEST
"VALUE" IT
"TUPLE" <TUPLE [REST ATOM])
Declare the global values of atoms to be constant

MANIFEST?
"VALUE" <OR I T FALSE)
ATOM
Predicate: is the global value of an atom constant

MAPF
"VALUE" ANY
<OR FALSE APPLICABLE> APPLICABLE "TUPLE" <TUPLE [REST STRUCTURED]>
Map function onto elements of structures

MAPLEAVE
"VALUE" ANY
"OPTIONAL" ANY
Leave the most recent MAPF/R with a value

Appendix 2

MAPR
"VALUE" ANY
<OR FALSE APPLICABLE> APPLICABLE "TUPLE" <TUPLE [REST STRUCTURED]>
Map function onto "rests" of structures

MAPRET
·TUPLE" TUPLE
Return a variable number of objects to the current MAPF/R

MAPSTOP
"TUPLE· TUPLE
MAPRET. then stop looping of MAPF/R and cause application

MAX
"VALUE" <OR FIX FLOAT>
"TUPLE" <TUPLE [REST <OR FIX FLOAT>]>
Arithmetic: maximum argument

ME
"VALUE" PROCESS
Return the current process

MEMBER
·VALUE" <OR FALSE STRUCTURED>
ANY STRUCTURED
Predicate: is object =7 to some element of a structure

MEMQ
"VALUE" <OR FALSE STRUCTURED>
ANY STRUCTURED
Predicate: is object ==7 to some element of a structure

MIN
"VALUE" <OR FIX FLOAT>
"TUPLE" <TUPLE [REST <OR FIX FLOAT>]>
Arithmetic: minimum argument

MOB LIST
"VALUE" OBLIST
ATOM "OPTIONAL" FIX
Create or get an obJist

Appendix 2

237

238

MOD
"VALUE" FIX
FIX FIX
Arithmetic: numerical modulus or remainder

HONAD?
·VALUE" (OR IT FALSE)
ANY
Predicate: is object unstructured or empty structure

N==?
·VALUER <OR IT FALSE)
ANY ANY
Predicate: NOT "exact- equality

N=7
·VALUE" (OR IT FALSE)
ANY ANY
Predicate: NOT "structural- equaJity

NETACC
"VALUER (OR FALSE CHANNEL)
CHANNEL
Accept a network connection

NETS
RVALUE· CHANNEL
CHANNEL
Force system network buffer to be sent

NETSTATE
"VALUP <UVECTOR FIX FIX FIX)
CHANNEL
Return a uniform vector of state info for a network channel

NEWTYPE
RVALUE" ATOM
ATOM ATOM "OPTIONAL" (OR ATOM <FORM IQUOTE FORM»
Define a new data type

NEXT
"VALUE" (OR FALSE ASOC)
ASOC
Return the next entry in the association chain

Appendix 2

NEXTCHR
"VALUE" (OR CHARACTER FIX)
"OPTIONAL" CHANNEL ANY
Return the next input character from an I/O channel

NOT
·VALUE- (OR 'T FALSE)
(OR FALSE ANY>
Logical: "not" of a truth value

NTH
-VALUE- ANY
STRUCTURED -OPTIONALM FIX
Return the Nth element of a structure

OBLIST?
"VALUE" (OR OBLIST FALSE)
ATOM
Predicate: return atom's oblist or false if none

OFF
·VALUE" (OR FALSE HANDLER IHEADER)
(OR HANDLER IHEADER STRING ATOM) "OPTIONAL M (OR CHANNEL LOCATIVE)
Remove an interrupt handler or destroy an interrupt

ON
"VALUE" HANDLER
(OR STRING ATOM) APPLICABLE FIX "OPTIONAL" (OR FIX PROCESS> (OR CHANNEL LOCATIVE>
Turn on an interrupt and create an interrupt handler

OPEN
IIVALUEII (OR CHANNEL (FALSE STRING STRING FIX»
"OPTIONAL" STRING "TUPLE" TUPLE
Create and open an 1/0 channel

OPEN-NR
"VALUE" (OR CHANNEL (FALSE STRING STRING FIX»
"OPTIONAL" STRING "TUPLE" TUPLE
Create and open an I/O channel without changing file's reference date

OR
"VALUe- (OR FALSE ANY>
-ARCS" LIST
Logical: inclusive "or" of truthvalues. evaluated one at a time by the Subroutine

Appendix 2

239

240

OR?
"VALUE" <OR FALSE ANY)
"TUPLE" TUPLE
Logical: inclusive "or" of truthvalues. evaluated at call time

ORB
"VALUE" WORD
"TUPLE" <TUPLE [REST <PRIMTYPE WORD>]>
Bitwise inclusive "or" of words

OVERFLOW
"VALUE" <OR IT I#FALSE (»
"OPTIONAL" <OR ANY FALSE)
Arithmetic: enable or disable overflow error

PARSE
"VALUE" ANY
"OPTIONAL" STRING FIX (OR OBLIST (LIST [REST (OR OBlIST 'DEFAULT>]» VECTOR CHARACTER
Parse a string into an object (sections 7.6.6.2. 15.7.2. 17.1.3)

PCODE
"VALUE" PCODE
STRING FIX
Create pointer to pure RSUBR code

PNAME
"VALUE" STRING
ATOM
Return the print name of an atom as a distinct copy

PRIMTYPE
"VALUE" ATOM
ANY
Return the primitive data type of an object

PRIMTYPE-C
"VALUE" PRIMTYPE-C
ATOM
Get a "storage allocation code" for a TYPE

PRINI
"VALUE" ANY
ANY ·OPTIONAL" CHANNEL
Print an object on an 1/0 channel without format

Appendix 2

PRINC
"VALUE" ANY
ANY "OPTIONAL" CHANNEL
Print an object on an 1/0 channel without format or indicators

PRINT
"VALUE" ANY
ANY "OPTIONAL" CHANNEL
Print an object on an 1/0 channel

PRINTS
·VALUE" <OR UVECTOR STORAGE>
«OR UVECTOR STORAGE> [REST <PRIMTYPE WORO>]> CHANNEL
\Vrite binary information on an 1/0 channel

PRINTSTRING
"VALUE" FIX
STRING "OPTIONAL" CHANNEL FIX
Write contents of string on an 1/0 channel

PRINTTYPE
"VALUE" <OR ATOM APPLICABLE FALSE>
ATOM "OPTIONAL" <OR ATOM APPLICABLE>
Specify or return how a data type is printed

PROCESS
"VALUE" PROCESS
APPLICABLE
Create a new process with startup function

PROG
"VALUE" ANY
"ARGS· <LIST -ATOM- LIST -DECL- ANY>
Execute sequential expressions

PURIFY
IIVALUE" ANY
IITUPLEII TUPLE
Purify objects everywhere

PUT
"VALUE" ANY
ANY ANY "OPTIONAL" ANY
Associate a property with an item

Appendix 2

241

242

PUT-oECL
"VALUE" LOCO
LOCO <OR ATOM <FORM 'QUOTE FORM»
Put the type declaration for an atom's value

PUTBITS
"VALUE" <PRIMTYPE WORD>
<PRIHTYPE WORD> BITS "OPTIONAL" <PRIMTYPE WORD>
Set a masked fieJd in a word

PUTPROP
"VALUE" ANY
ANY ANY "OPTIONAL" ANY
a more general version of PUT

PUTREST
"VALUE" <PRIMTYPE LIST>
<PRIMTYPE LIST> <PRIMTYPE LIST>
Replace the rest of a list

QUIT
"VALUEII 'IFALSE ()
Exit from MDL gracefuJly

QUITTER
·VALUE- CHARACTER
CHARACTER CHANNEL
interrupt handler for AG and AS quit features

QUOTE
"VALUE" ANY
"ARGSII LIST
Return first argument unevaluated

RANDOM
"VALUE" FIX
"OPTIONAL" FIX FIX
Arithmetic: generate a uniform pseudo-random integer

READ
"VALUE" ANY
"OPTIONAL" CHANNEL ANY <OR OBLIST XLIST [REST <OR OBLIST 'DEFAULD]» VECTOR
Read one object from an I/O channel (sections 11.1.1.1, 11.3. 15.7.1. 17.1.8)

Appendix 2

READS
"VALUE" FIX
«OR UVECTOR STORAGE> [REST (PRIMTYPE WORD>]> CHANNEL ·OPTIONAL· ANY
Read binary information from an 1/0 channel

READCHR
"VALUE" (OR CHARACTER FIX>
"OPTIONAL" CHANNEL ANY
Read one character from an 1/0 channel

READSTRING
"VALUE" FIX
STRING "OPTIONAL" CHANNEL (OR FIX STRING> ANY
Read into a string from an 1/0 channel

REALTIMER
"VALUE" (OR FIX FLOAT>
(OR FIX FLOAT>
Set interval for real-time interrupts

REMOVE
"VALUE" (OR ATOM FALSE>
(OR ATOM STRING> "OPTIONAL" OBLIST
Remove an atom from an oblist

RENAME
"VALUE" (OR • T (FALSE STRING FIX»
"TUPLE" (TUPLE (OR STRING CHANNEL»
Rename or delete a disk file

REP
"VALUE" ANY
default for Read-Eval-Print loop

REPEAT
"VALUE" ANY
"ARGS" (LIST -ATOM- LIST -DECL- ANY>
Execute sequential expressions repeatedly

RESET
"VALUE" (OR CHANNEL (FALSE STRING STRING FIX»
CHANNEL
Reopen an 1/0 channel at iu beginning

Appendix 2

243

244

REST
"VALUE" STRUCTURED
STRUCTURED "OPTIONAL" FIX
Remove the first N elements from a structure and change to primitive data type

RESTORE
"VALUE" '"RESTORED"
"OPTIONAL" STRING STRING STRING STRING
Restore MDL's state from a file

RESUME
"VALUE" ANY
ANY ·OPTIONAL· PROCESS
Transfer execution to another process

RESUMER
"VALUE" (OR PROCESS FALSE)
"OPTIONAL· PROCESS
Return the process that most recently resumed this one

RETRY
"OPTIONAL" FRAME
Retry a previous Subroutine caU from the error level

RETURN
·VALUE" ANY
·OPTIONAL" ANY ACTIVATION
Leave an activation block with a value

RGLOC
"VALUE" LOCR
ATOM "OPTIONAL" (OR FALSE ANY)
Return a locative to the global-value ce)) of an atom for pure-program use

ROOT
"VALUE" OBLIST
Return the obJist containing primitives

RSUBR
"VALUE II RSUBR
(VECTOR <OR CODE PCODE) ATOM DECL [REST ANY])
Create a relocatable subroutine

Appendix 2

RSUBR-ENTRY
"VALUE" RSUBR-ENTRY
<VECTOR <OR ATOM RSUBR> ATOM OECL> FIX
Add entry point to RSUBR

RSUBR-LINK
·VALUE" <OR FALSE ANY>
"OPTIONAL" <OR FALSE ANY>
Enable or disable the automatic linking feature

RUNINT
"VALUP ANY
APPLICABLE "TUPLE" TUPLE
Apply interrupt han~ler (for internal use only)

RUNTIMER
"VALUE" <OR FIX FLOAT>
<OR FIX FLOAT>
Set interval for run-time interrupt

SAVE
·VALUE" I "SAVEO"
"OPTIONAL" -STRING- -STRING- -STRING- -STRING- <OR FALSE ANY>
Write the entire state of MDL to a file

SEND
·VALUE" <OR IT FALSE>
STRING STRING <OR STRING STORAGE <UVECTOR [REST <PRIMTYPE WORD>]» "OPTIONAL" FIX

STRING STRING
Send an IPC message (ITS only)

SEND-WAIT
"VALUE" IT
STRING STRING <OR STRING STORAGE <UVECTOR (REST <PRIHTYPE WORD>]» ·OPTIONAL" FIX

STRING STRING
Send an IPC message and wait for it to be received (ITS only)

SET
"VALUP ANY
ATOM ANY "OPTIONAL" <OR ENVIRONMENT ACTIVATION FRAME PROCESS>
Change the local value of an atom

Appendix 2

245

246

SETG
"VALUE" ANY
ATOM ANY
Change the global value of an atom

SETLOC
·VALUE" ANY
LOCATIVE ANY
Change the contents pointed to by a locative

SIN
"VALUP FLOAT
<OR FIX FLOAT>
Arithmetic: sine

SLEEP
"VALUE" ANY
<OR FIX FLOAT> "OPTIONAL" ANY
Do nothing. interruptibly. the number of seconds indicated

SNAME
"VALUE" STRING
"OPTIONAL" STRING
Set or return the default directory name for new 1/0 channels

SORT
"VALUE· <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR> <PRIMTYPE TUPLE»
<OR FALSE APPLICABLE> <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR> <PRIHTYPE TUPLE»

"OPTIONAL" FIX FIX "TUPLE" <TUPLE [REST (OR <PRIHTYPE VECTOR> <PRIHTYPE UVECTOR>
<PRIMTYPE TUPLE» FIX]>

Sort elements of a structure

SPECIAL-CHECK
"VALUE" <OR 'T FALSE>
"OPTIONAL" <OR ANY FALSE>
Turn interpreter special-checking on or off

SPECIAL-MODE
"VALUE" <OR 'SPECIAL 'UNSPECIAL>
"OPTIONAL" (OR 'SPECIAL 'UNSPECIAL>
Set default speciality

Appendix 2

SPNAME
"VALUE" STRING
ATOM
Return the print name of an atom by sharing it

SQRT
"VALUE" FLOAT
<OR FIX FLOAT>
Arithmetic: square root

SQUOTA
"VALUEII <OR FIX FALSE>
<PRIMTYPE WORD>
Get the address of an internal interpreter symbol (for internal use only)

STACKFORM
"VALUE" ANY
"ARGS" <LIST APPLICABLE ANY ANY>
Apply a function to stacked arguments

STATE
"VALUE" ATOM
PROCESS
Return a process's current state

STORE
"VALUE" STORAGE
«OR <PRIMTYPE UVECTOR> <PRIMTYPE STORAGE» [REST <PRIMTYPE WORD>]>
Copy into new non-garbage-collected storage (archaic) (ITS only)

STRCOMP
·VALUE" FIX
<OR ATOM STRING> <OR ATOM STRING>
Compare two character strings or two print names

STRING
"VALUE" STRING
"TUPLE" <TUPLE [REST <OR STRING CHARACTER>]>
Create a string of explicit arguments

STRUCTURED?
"VALUE" <OR FALSE IT>
ANY
Predicate: is argument structured

Appendix 2

247

248

SUBSTITUTE
"VALUE" ANY
ANY ANY
Substitute one object for another everywhere

SUBSTRUC
"VALUEu <OR LIST VECTOR UVECTOR STRING BYTES>
(OR <PRIMTYPE LIST) <PRIMTYPE VECTOR} <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR} <PRIMTYPE

STRING> <PRIMTYPE BYTES» "OPTIONAL" FIX FIX <OR LIST VECTOR UVECTOR STRING BYTES>
Copy part of a structure into another

SUICIDE
uVALUE" ANY
ANY "OPTIONAL" PROCESS
Cause the current process to die and resume another

TAG
"VALUE" TAG
ATOM
Create a tag in an activation block

TERPRI
·VALUE- '/FALSE ()
·OPTIONAL· CHANNEL
Print a carriage-return and line-feed on an I/O channel

TIME
uVALUE" FLOAT
"TUPLfU TUPLE
Return the elapsed execution time in seconds

TOP
MVALUE" <OR VECTOR UVECTOR STRING TEMPLATE>
<OR <PRIMTYPE VECTOR) <PRIMTYPE UVECTOR> <PRIMTYPE STRING) <PRIMTYPE TEMPLATE})
Replace all elements removed from a non-list structure by RESTing and change to primitive data

type

TTYECHO
uVALUP CHANNEL
CHANNEL <OR FALSE ANY>
Turn echoing of characters typed on a console on or off

Appendix 2

TUPLE
"VALUP TUPLE
"TUPLP TUPLE
Create a tuple (vector on the control stack) of explicit arguments

TYI
"VALUE" CHARACTER
"OPTIONAL" CHANNEL
Input a character from a console immediately

TYPE
"VALUE" ATOM
ANY
Return the data type of an object

TVPE-C
"VALUE" TYPE-C
ATOM "OPTIONAL" ATOM
Get a data-type code for pure-program use

TYPE-W
"VALUE" TYPE-W
ATOM "OPTIONAL" ATOM <PRIMTYPE WORD)
Get a data-type word for pure-program use

TYPE?
"VALUE" <OR FALSE ATOM)
ANY "TUPLP <TUPLE ATOM [REST ATOM])
Predicate: is object one of specified data types

TYPE PRIM
"VALUE" ATOM
ATOM
Return a data type's primitive type

UNAME
"VALUE" STRING
Return user name of MDL

UNASSIGN
"VALUP ATOM
ATOH ·OPTIONAL" <OR ENVIRONMENT ACTIVATION FRAME PROCESS)
Cau.se an atom to be 10caJJy unassigned

Appendix 2

249

250

UNMANIFEST
uVALUE" IT
uTUPLEu <TUPLE [REST ATOM]>
Declare the global values of atoms not to be constants

UNPARSE
·VALUEu STRING
ANY ·OPTIONALw FIX
Create a string representation of an object

UNWIND
"VALUE" ANY
-ARGSw <LIST ANY ANY>
Specify cleaning-up during non-local return

UTYPE
wVALUE" ATOM
<PRIHTYPE UVECTOR>
Return the data type of aU elements of a uniform vector

UVECTOR
"VALUE" UVECTOR
"TUPLE" TUPLE
Create a uniform vector of explicit arguments

VALID-TYPE?
-VALUE· <OR TYPE-C FALSE>
ATOH
Predicate: is an atom the name of a type

VALRET
"VALUE" FALSE
STRING
Pass a string to superior job using .VALUE UUO

VALUE
"VALUE" ANY
ATOH "OPTIONAl" <OR ENVIRONMENT ACTIVATION FRAME PROCESS)
Return the local or else the global value of an atom

VECTOR
"VALUE" VECTOR
"TUPLE" TUPLE
Create a vector of explicit arguments

Appendix 2

XORB
"VALUE II WORD
"TUPLE" <TUPLE [REST <PRIMTYPE WORD>]>
Bitwise exclusive "or" of words

251

Appendix 2

252

Appendix 3. Predefined Types

On these two pages is a table showing each of MDL's predefined TYPEs. its primitive type if
different. and various flags: S for STRUCTURED, E for EVALTYPE not QUOTE. and A for APPLICABLE.

X means that an object of that TYPE cannot be CHTYPEd to and hence cannot be READ in (if
attempted, CAN' T -CHTYPE-INTO ERROR is usual).

B means that an object of that TYPE canllot be READ in (if attempted, STORAGE - TYPES-DIFFER ERROR
is usuaJ), that instead it is built by the interpreter or CHTYPEd to by a program. and that its PRINTed
representation makes it look as though its TYPEPRIM were different.

X mean.s that an object of that TYPE is PRINTed using" notation and can be READ in only that way.

TYPE TYPE PRIM SEA comments

ACTIVATION FRAME X
ASOC B sic: only one S
ATOM
BITS WORD
BYTES S
CHANNEL VECTOR S X
CHARACTER WORD
CLOSURE LIST S A
CODE UVECTOR S
DECL LIST S
DISMISS ATOM can be returned by interrupt handler
ENVIRONMENT FRAME B
FALSE LIST S
FIX WORD A
FLOAT WORD
FORM LIST S E
FRAME B
FSUBR WORD A X
FUNCTION LIST S A
HANDLER VECTOR S X
IHEADER VECTOR S X "interrupt header"
ILLEGAL WORD X Garbage collector may put this on non-LEGAL? object.
INTERNAL WORD X should not be seen by programs
LINK ATOM X for console shorthand
LIST S E
LOCA B locative to TUPLE

Appendix 3

LOCAS
LOCB
LOCO
LOCL
LOCR
LOCS
LOCT
LOCU
LOCV
LOSE WORD
MACRO LIST
OBLIST
PCODE
PICTURE

UVECTOR
WORD
STORAGE

PRIMTYPE-C WORD
PROCESS
QUICK-ENTRY VECTOR
QUICK-RSUBR VECTOR
READA FRAME
RSUBR VECTOR
RSUBR-ENTRY VECTOR
SEGMENT LIST
SPLICE LIST
STORAGE
STRING
SUBR WORD
TAG VECTOR
TEMPLATE
TIME WORD
TUPLE
TYPE-C WORD
TYPE-W WORD
UNBOUND WORD
UVECTOR
VECTOR
WORD

B locative to ASOC
B locative to BYTES
Yo locative to G/L V AL
B locative to LIST
Yo locative to GVAL in pure program
B locative to STRING
B locative to TEMPLATE
B locative to UVECTOR
B locative to VECTOR

a place holder
S A
S X

Yo "pure code"
S

% "primtype code"
B

S A % an RSUBR-ENTRY that has been QCALLed and RSUBR-LINKed
S A "/B an RSUBR that has been QCALLed and RSUBR-LINKed

X in eof slot during recursive READ via READ-TABLE
S A Yo/B if code vector is pure/impure, respectively
SA"
S E
S
S
S

A X
S X
S B

S B

" %
X

S E
S E

for returning many things via READ-TABLE
If possible. use FREEZE SUBR instead.

for non-local GOs
The interpreter itself can't build one. See ref 1.
used internally to identify FRAMEs
vector on the contro] stack
"type code"
"type word"
value of unassigned but bound ATOM. 85 seen by locatives
"uniform vector"

Appendix 3

253

254

Appendix 4. Error Messages

This is a list of aU ATOMs initiaJJy in the ERRORS OBLIST, in the left·hand column, and appropriate
examples or elucidations, where necessary, in the right.hand column.

ACCESS-FAILURE
AlREADY-DEFINED-ERRET-NON-FAlSE-TO-REDEFINE
APPlY-OR-STACKFORM-OF-FSUBR

ARG-WRONG-TYPE
ARGUHENT-OUT-OF-RANGE

ATOM-ALREADY-THERE

ATOM-NOT-TYPE-NAME-OR-SPECIAl-SYMBOl
ATOM-ON-DIFFERENT-OBlIST
ATTEHPT-TO-BREAK-OWN-SEQUENCE
ATTEHPT-TO-CHANGE-MANIFEST-VARIABlE
ATTEHPT-TO-ClOSE-TTY-CHANNEl
ATTEHPT-TO-DEFER-UNOEFERABlE-INTERRUPT

ATTEHPT-TO-GROW-VECTOR-TOO-MUCH
ATTEHPT-TO-MUNG-ATOMS-PNAME
ATTEHPT-TO-MUNG-PURE-STRUCTURE
ATTEHPT-TO-SUICIDE-TO-SElF
BAD-ARGUMENT-lIST
BAD-ASCI I-CHARACTER

BAD-BYTES-DECl
BAD-CHANNEL
BAD-CLAUSE

BAD-DECLARATION-lIST
BAO-OEFAULT-OBLIST-SPECIFICATION
BAD-E&S-TABLE

BAD-ENTRY-BLOCK

BAD-ENVIRONMENT
BAO-FIXUPS
BAD-FUNARG

Appendix 4

ACCESS, RESTORE (TENEX only)

First argument to APPLY, STACKFORM,
MAPF/R doesn't EVAl all its arguments.

<ASCII 999)S Second argument to NTH
or REST too big or small.
<INSERT "T" <ROOT»S <LINK 'T "T"
<ROOT»S
DECl problem
INSERT, LINK, REMOVE
<BREAK-SEQ T <HE»S

<CLOSE ,INCHAN)S
"Undeferable" interrupt (e.g. "ERROR ")
while INT-LEVEl is too high to handle it
GROW argument greater than <- 16 1024)
<PUT <SPNAME T) 1 !\T)S
attempt to write into pure page
<SUICIDE <ME»S
<GDECl ("HIN) STRING)S
A character with wrong byte size or
ASCII code more than 177 octal has been
read (how?).

Argument to COND is non· LIST or empty
LIST.
DECL in bad form
bad use of DEFAULT in LIST of OBlIS Ts
bad character definitions for PICTUREs
(ITS only)
RSUBR-ENTRY does not point to good
RSUBR.

CLOSURE in bad form

BAD-GC-READ-FILE
BAD-INPUT-BUFFER
BAD-LINK
BAD-MACRO-TABLE

BAD-OBLIST-OR-LIST-THEREOF

BAD-PARSE-STRING
BAD-PNAME

BAD-PRIMTYPEC
BAD-TEMPLATE-DATA
BAD-TYPE-CODE
BAD-TYPE-NAME
BAD-TYPE-SPECIFICATION
BAD-USE-OF-BYTE-STRING
BAD-USE-OF-MACRO
BAD-USE-OF-SQUIGGLY-BRACKETS
BAD-VECTOR
BYTE-SIZE-BAD
CAN'T-PARSE
CANT-CHTYPE-INTO
CANT-FINO-TEMPLATE

CANT-OPEN-OUTPUT-FILE
CANT-RETRY-ENTRY-GONE

CANT-SUBSTITUTE-WITH-STRING-OR-TUPLE-AND-OTHER
CHANNEL-CLOSED
CONTROL-G?
COUNT-GREATER-THAN-STRING-SIZE
DANGEROUS-INTERRUPT-NOT-HANDLED
DATA-CAN'T-GO-IN-STORAGE
DATA-CANT-BE-STORED
DATA-CANT-GO-IN-UNIFORM-VECTOR
DECL-ELEMENT-NOT-FORM-OR-ATOM
DECL-VIOLATION
DEVICE-OR-SNAME-DIFFERS
DISPLAY-FULL
ELEMENT-TYPE-NOT-ATOM-FORM-OR-VECTOR
EMPTY-FORM-IN-DECL
EMPTY-OR/PRIMTYPE-FORM
EMPTY-STRING
END-OF-FILE
ERRET-TYPE-NAME-DESIRED

Appendix 4

255

(for a CHANNEL)
(GUNASSIGN (CHTYPE fink ATOM»
.READ-TABLE or .PARSE-TABLE is not a
vector.
AlJeged obJist path is not of TYPE OBLIST
or LIST.
non-STRING argument to PARSE
attempt to output ATOM with missing or
zero-length PNAME

ATOM purports to be a TYPE but isn't.
DECL problem
13S

OS
Bad argument to RSUBR-ENTRY
"NET" CHANNEL
(PARSE "">$ (PARSE ")">$
(CHTYPE 1 SUBR>S
attempt to GC-READ a structure containing
a TEMPLATE whose TYPE does not exist
SAVE
attempt to RETRY a call to an RSUBR
ENTRY whose RSUBR cannot be found
(SUBSTITUTE "T" T>$
(READ (CLOSE channel»$
AG
(PRINTSTRING nn .OUTCHAN 1>$
(See section 21.10.13.) (ITS only)
FREEZE ISTORAGE
STORE (ITS only)
I[MSTRING"]S I[(FRAME>]S

RENAME
DISPLAY (ITS only)
DECL problem

(OR> or (PRIMTYPE> in DECL
(READSTRING "M>$

256

ERROR-IN-COMPILED-CODE
FILE-NOT-FOUND
FILE-SYSTEM-ERROR
FIRST-ARG-WRONG-TYPE
FIRST-ELEMENT-OF-VECTOR-NOT-CODE
FIRST-VECTOR-ELEMENT-NOT-REST-OR-A-FIX
FRAME-NO-LONGER-EXISTS
HANDLER-ALREADY-IN-USE
HAS-EMPTY-BODY
ILLEGAL
ILLEGAL-ARGUMENT-BLOCK

ILLEGAL-FRAME
ILLEGAL-LOCATIVE
ILLEGAL-SEGMENT

ILLEGAL-TENEX-FILE-NAME
INT-DEVICE-WRONG-TYPE-EVALUATION-RESULT

INTERNAL-BACK-OR-TOP-OF-A-LIST
INTERNAL-INTERRUPT
ITS-CHANNELS-EXHAUSTED
MEANINGLESS-PARAMETER-DECLARATION
MESSAGE-TOO-BIG
HUDDLE-VERSIONS-DIFFER
NEGATIVE-ARGUMENT
NIL-LIST-OF-OBLISTS
NO-ITS-CHANNELS-FREE
NO-MORE-PAGES
NO-PROCESS-TO-RESUME
NO-STORAGE
NO-SUCH-DEVICE?
NON-6-BIT-CHARACTER-IN-FILE-NAME
NON-APPLICABLE-REP
NON-APPLICABLE-TYPE
NON-ATOMIC-ARGUMENT

RESTORE

RSUBR in bad form.
IDECL «X) <LIST [FOO]»
(unused)

<'FUNCTION «X» 1>S

attempt to PRINT a TUPLE that no longer
exists

Third and later arguments to MAPF/R
not STRUCTURED.
(TENEX only)
function for • INP input CHANNEL
returned non-CHARACTER.
in compiled code
(unused)
Interpreter couldn't open an ITS channel.
bad object in argument LIST of Function
IPC (ITS only)
RESTORE

<SET OBLIST I(» TS
IPC-ON (ITS only)
for pure-code mapping
<OR <RESUMER> <RESUME»S
No free storage available for GROW.
(TENEX only)

<VALUE REP) not APPLICABLE

NON-ATOMIC-OBLIST-NAME T!-3$
NON-OSK-DEVICE ~nu~d)

NON-EVALUATEABLE-TYPE (unused)
NON-EXISTENT-TAG (unused)
NON-STRUCTURED-ARG-TO-INTERNAL-PUT-REST-NTH-TOP-OR-BACK in compiled code
NON- TYPE-FOR-PRIMTYPE-ARG <PRIMTYPE not-type) in DECL
NOT-A-TTY-TYPE-CHANNEL
NOT-HANDLED First argument to OFF not ONed.

Appendix 4

NOT-IN-ARG-LIST

NOT-IN-MAP-FUNCTION

NOT-IN-PROG
NTH-BY-A-NEGATIVE-NUMBER
NTH-REST-PUT-OUT-OF-RANGE
NULL-STRING
NUMBER-OUT-OF-RANGE
ON-AN-OBLIST-ALREADY
OUT-OF-BOUNDS
OVERFLOW
PDL-OVERFLOW-BUFFER-EXHAUSTED

PICTURE-NOT-FOUND
PROCESS-NOT-RESUMABLE
PROCESS-NOT-RUNABLE-OR-RESUMABLE
PURE-LOAD-FAILURE
READER-SYNTAX-ERROR-ERRET-ANYTHING-TO-GO-ON
RSUBR-ENTRY-UNLINKED

RSUBR-IN-BAD-FORMAT
RSUBR-LACKS-FIXUPS

SECOND-ARG-WRONG-TYPE
STORAGE-TYPES-DIFFER

STRUCTURE-CONTAINS-UNDUMPABLE-TVPE
SUBSTITUTE-TYPE-FOR-TYPE
TEHPLATE-TYPE-NAME-NOT-OF-TYPE-TEMPlATE

TEMPLATE-TYPE-VIOLATION
THIRD-ARG-WRONG-TYPE
TOO-FEW-ARGUMENTS-SUPPlIED
TOO-MANY-ARGS-TO-SPECIAL-UNSPECIAl-DECl
TOO-MANY-ARGUMENTS-SUPPlIED
TOP-LEVEL-FRAME
TYPE-ALREADY-EXISTS
TYPE-MISMATCH
TYPE-UNDEFINED
TYPES-DIFFER-IN-STORAGE-OBJECT
TYPES-DIFFER-IN-UNIFORM-VECTOR
UNASSIGNED-VARIABLE
UNATTACHED-PATH-NAME-SEPARATOR

Appendix 4

257

TUPLE or ITUPlE called outside argument
lIST.
MAPRET, MAPLEAVE. MAPSTOP not within
MAPF/R
<RETURN>$ <AGAIN>$
in compiled code
in compiled code
zero-length STRING
ZE3S$
<INSERT T <ROOT»$
< 1 I () >$ BLOAT argument too large
<I 1 0>$ <- IE30 IE30>$
Stack overflow while trying to expand
5tack: use RETRY.
ERASE (ITS only)
use of another PROCESS', FRAME. etc.

Pure-code file disappeared.

RSUBR-ENTRY whose RSUBR cannot be
found

KEEP-FIXUPS 5hould have been true when
RSUBR wa5 input.

<CHTYPE I LISDS <CHUTYPE I! [I]
lISDS
<GC-DUMP <ME) <»$
<SUBSTITUTE SUBR FSUBR>S
attempt to GC-READ a structure containing
a TEMPLATE whose TYPE is defined but is
not a TEMPLATE

<SPECIAL any ••• >

<ERRET> <FRAME <FRAME <FRAME»>S
NEWTYPE
attempt to make a value violate its DECl

ISTORAGE
![T <>]$

!-$

258

UNBOUND-VARIABLE
UNMATCHED
UVECTOR-PUT-TYPE-VIOLATION

VECTOR-LESS-THAN-2-ELEMENTS
WRONG-DIRECTION-CHANNEL

WRONG-NUMBER-OF-ARGUMENTS

Appendix 4

ENDBlOCK with no matching BLOCK
PUT. SETlOC. SUBSTRUC in compiled
code
IOECL «X) (LIST [REST]>)
(OPEN HMYFILP >$ (Mode missing or
misspell.)

Appendix 5. Initial Settings

The various switches and useful variables in MOL are initially set up with the following values:

(ACTIVATE-CHARS <STRING <ASCII 7> <ASCII 19> <ASCII 15»>

(DECL-CHECK 1>
<UNASSIGN <GUNASSIGN DEV»
<GC-MON <»
<SET INCHAN <SETG INCHAN (OPEN "READ" "TTY:-»>
<UNASSIGN KEEP-FIXUPS>
<UNASSIGN <GUNASSIGN NMl»
<UNASSIGN <GUNASSIGN NMZ»
<SET OBlIST <SETG OBLIST «MOBlIST INITIAL 151> <ROOT»»
<SET OUTCHAN (SETG OUTCHAN <OPEN "PRINT" "TTY:-»>
<OVERFLOW 1>
<UNASSIGN REDEFINE>
<RSUBR-LINK 1>
<SETG <UNASSIGN SNM> "working-directory->
<SPECIAL-CHECK <»
<SPECIAL-MODE UNSPECIAl>
<SET THIS-PROCESS <SETG THIS-PROCESS <MAIN»>
<ON "CHAR" ,QUITTER 8 0 ,INCHAN>
<ON -IPC- ,IPC-HANDLER 1> j-ITS only-

Appendix 5

259

260

Referenoes

Note: the form SYS.nn.mm refers to an internal PTD document. available from Programming
Technology Division. Laboratory for Computer Science. M.I.T.

1. Berkowitz. Brian. and Chris Reeve. Templates in MOL, SYS.11.2i.

2. Daniels, Bruce. The MDL Assembler, SYS.11.07

S. Daniels. Bruce. and Ed Black. MOL Graphics User's Manual. SYS.11.04

4. CaUey. S. W .• Pre-loaded Pure MDL RSUBRs. SYS.ll.28

5. Hewitt. Carl, Planner: A Language for Manipulating Model$ and Proving Theorems in a Robot,
Proc. IntI. joint Conf. on Artif. Intel .• May 1969

6. Moon, David A .• MACLISP Reference Manual, Laboratory for Computer Science, M.I.T.

7. Reeve. Chris. The MDL Compiler. SYS.1l.25

8. Ryan. Neal D., and Michael S. Broos. MDL Library System Guide. SYS.ll.15

References

•

261

Topic Index

Parenthesized words refer to other items in this index.

arguments

arithmetic

array

assignment

binding

bits

block

boolean

bugs

caJJ

change

character

circular

comma

comments

comparison

conditional

IIOPTIONAL" HTUPLE II "ARGS" (parameter)

+ - • I ASS EXP LOG SIN COS ATAN MIN MAX RANDOM 07 17 ==7 L7 G7 L=7
G=7 N==7

VECTOR UVECTOR TUPLE STRING BYTES TEMPLATE

SET SETG DEFINE DEFMAC ENVIRONMENT (value parameter binding)

BOUND? GBOUND? ASSIGNED? GASSIGNED? LEGAL? (assignment value parameter)

WORD BITS PUTBITS GETBITS BYTES ANDB ORB XORB EQVB

BIND PROG REPEAT OBLIST BLOCK ENDBLOCK OBLIST MOBLIST OBLIST7 !-

FALSE COND AND AND? OR OR? NOT (comparison)

(errors)

FORM APPLY APPLICABLE? EVAL SEGMENT

PUT PUTPROP PUTBITS SET SETG

CHARACTER STRING ASCII PRINC READCHR NEXTCHR FLATSIZE LISTEN PARSE
LPARSE UNPARSE

PUTREST PUT LENGTH? FLATSIZE

GVAL SETG

; FUNCTION ASSOCIATION

==? N==? =? N=? G? L=? L? G=? O? I? MAX MIN STRCOMP FLATSIZE LENGTH?
(boolean)

COND AND OR (boolean)

Topic Index

262

concatenation

console

coroutine

data type

decimal

do

dump

errors

escape

execute

exit

file system

goto

graphics

identifier

if

indexing

input

integer

interrupts

iteration

SEGMENT STRING CONS

(tty)

PROCESS

TYPE TYPE? PRIMTYPE TYPE PRIM CHTYPE UTYPE CHUTYPE NEWTYPE PRINTTYPE
APPLYTYPE EVALTYPE ALLTYPES VALID-TYPE?

(loops execute call)

SAVE (output)

FRAME ARGS FUNCT ERROR ERRORS ERRET RETRY UNWIND

\ G S

EVAL APPLY QUOTE FSUBR "ARGS" (call)

RETURN ACTIVATION (goto)

FILECOPY FILE-LENGTH RENAME OPEN OPEN-NR CHANNEL NMI NMZ DEV SNAME

GO TAG UNWIND PROG REPEAT AGAIN RETURN ACTIVATION -ACT- (loops)

DISPLAY ERASE PICTURE STORAGE IMAGE

ATOM PNAME SPNAME LINK LOOKUP INSERT REMOVE OBLIST SPECIAL (parameter
value)

(conditional)

NTH GET PUT SACK TOP (loops)

READ READCHR NEXTCHR READS READSTRING READ-TABLE GC-READ OPEN ACCESS
LOAD FLOAD RESTORE FILE-LENGTH RESET

FIX (arithmetic)

EVENT HANDLER ON OFF ENABLE DISABLE INT-LEVEL DISMISS INTERRUPT

(loops)

Topic Index

263

leave (q uit)

loading FLOAD SAVE RESTORE LOAD

location (pointer)

loops REPEAT PROG RETURN GO ACTIVATION AGAIN MAPF MAPR STACKFORH ILIST
IVECTOR IUVECTOR ISTRING IBYTES IFORM

macro % XX LINK READ-TABLE PARSE-TABLE DEFMAC EXPAND MACRO

monitor IIREADII IIWRITE"

multiprocessing PROCESS STATE RESUME SUICIDE RESUMER ME MAIN BREAK-SEQ

octal It

output PRINT PRINI PRINC PRINTB PRINTSTRING IMAGE GC-DUMP ECHOPAIR FLATSIZE
SAVE TERPRI CRLF ACCESS RESET BUFOUT NETS

parameter FUNCTION ATOM LVAL SET SPECIAL UNSPECIAL (identifier value)

parentheses LIST

parse PARSE LPARSE PARSE-TABLE UNPARSE

period LVAL SET READ

pointer LOCATIVE AT IN SETLOC LIST

predicate (boolean)

primitives SUBR FSUBR ROOT GVAL SETG

procedure FUNCTION DEFINE DEFMAC GVAL CLOSURE

quit AG AS QUIT VALRET LOGOUT RETURN (loops)

real FLOAT (arithmetic)

recursion (always assumed and built in)

search MEMQ MEMBER =7 ==7 (comparison)

sharing SEGMENT GROW SUBSTRUC

Topic Index

264

sixbit

storage

structure

subroutine

temporary

text

trailer

true

tty

unbinding

value

UNAME JNAME SEND SEND-WAIT IPC-ON

GC BLOAT BLOAT-STAT FREEZE TUPLE "GC" (structure)

LIST VECTOR UVECTOR STRING BYTES TEMPLATE STRUCTURED? EMPTY? MONAD?
LENGTH LENGTH? (concatenation)

(procedure primitive)

"AUX" BIND PROG REPEAT

(character)

! - OBLIST

(boolean)

LISTEN AL AG A@ AD rubout ECHOPAIR TTYECHO TYI "BLOCKED" "UNBLOCKED"
ACTIVATE-CHARS (character)

(binding)

LVAL GVAL VALUE IN SET SETG ENVIRONMENT ASSIGNED? GASSIGNED? BOUND?
GBOUND? "BIND" ACTIVATION "ACT" (parameter) RETURN (quit loops)

Topic Index

265

Token Index "NAME" 8285
liNEr" 113
"OPT" 7684 135
IIOPTIONAL" 767984 135

An underscored page number refers to a "PARITY" 187
primary description; an unadorned page uPRINT" 100
number refers to a secondary description. "PRINTS" 100

uPRINTO· 100
! " 63 ·PURE" 187
!$ 17 "QUOTE" 135
! • 65 "READ" 100 104 182 185 206
1- 24 139 "READS" 100
!-'FALSE () 142 "REALP 186
!. 65201 "RUNP 186
!< 65201 "SAVE" 107
!) 65 "STY" 111
! [53 "SYSDOWN" 185
!\ 6399 "TUPLP 7785104 136
!] 53 "UNBLOCKED" 185

UVALUE" 135
" 24 53 99 "WRITE" 185206
11)11 101
IIACT" 8285 I 24 44 46 99
IIARGS" 8084
IIAUX" 7985102104 S f 16 24 97 112 182 183 185
"BIND" 8184
"BLOCKED" 180 184 " 24 152
"CALL" 8185 "" 152
"CHAR" 182
"CLOCK" 184 24 55
-DISPLAY" 100 113
·DIVERT-AGC· 184 192 (24 53
IIDSK" 101 107
"ERROR" 186) 24 53
"EXTRA" 7985
"GC" 183 III 2328 151 159
"ILOPR" 187
"INFERIOR" !§! + 28151
"INPUT" 101
"INT" 112 24 31
"IOC" 187
"IPC" 186 199 28151
"MOL" 101
"MPV" 187 2J 24 32
"MUDDLE" 107

Token Index

266

I 28151 BLOAT 184 193
BLOAT-STAT 194

O? 69 BLOCK 141144
BOUND? 77 174 185

11 70 BREAK-SEQ 172
lSTEP 173 BREAKER 172

BUFOUT 101110 115
24 40 BYTE-SIZE 64

BYTES ~ 6464208
< 24

CALLER 163
==? 70206 CHAN LIST 102
1:1 7091 CHANNEL 64 100 102 102 103 122

CHARACTER 6399154
> 24 CHTYPE 4547206

CHUTYPE 62211
ABS 28 CLOSE 102
ACCESS 101109 CLOSURE 86
ACTIVATE-CHARS 182 CODE 163
ACTIVATION 82 150 181 190 201 COMMENT 122
AGAIN 8388150174 COND 73
AGC-FLAG 184 CONS 58
ALLTYPES 46 COS 40
AND 7274 183 CRLF 99
AND? 7291
ANDB 64161 DEAD 169169
ANY 125 DECL 124218
APPLICABLE 125 DECL-CHECK 133
APPLICABLE? 72 DECL? 135
APPLY 4786 DEFAULT 140
APPLYTYPE 47 DEFINE ~147
ARGS 148174 DEFMAC 156
ASCII 63 DEMSIG 198
ASOC 123 168 213 DEV 101259
ASSIGNED? 7477 174 185 DISABLE 180
ASSOCIATIONS 123 DISMISS 174 181 181 ---AT 117 DISPLAY 101 113
ATAN 40
ATOM 22 99 142 191 212 ECHOPAIR 101112 146
AVALUE 123 EMPTY? 72

ENABLE 180
BACK 58210 ENDBLOCK 141144
BINARY 165 ENTRY-LOC 165
BIND 82 88 ENVIRONMENT 37
BITS 160 EQVB 161

Token Index

267

ERASE 101113 GETBITS 160
ERRET 18 148 174 217 GETL 117
ERROR 18 147 181 202 GETPL 117
ERRORS 141147202 GETPROP 121
EVAL 2047 81173 GLOC 117 164
EVALTYPE 47 GO 95174200
EVENT 178 GROW 59184
EVLIN 174 GUNASSIGN 32
EVLOUT 174 GVAL 31 39 41 117 168 190 191 203
EXP 41
EXPAND 157 HANDLER 177 179 183

HANG 187
FALSE 69
FBIN 166 IBYTES 64
FILE-LENGTH 101109 IFORM 57

'" FILECOPY 101110 IHEADER 177
FIX 21 2223 28 IllST 56200
FLATSIZE 47 99 ILLEGAL 190
FLOAD 18 74 109 150 IMAGE 101106
FLOAT 22 23 IN 116 118 119
FORM 2733 5769 INCHAN 102 146
FRAME 19 147 148 174 190 208 INDICATOR 123
FREE 229 INITIAL 140259
FREE-RUN 174 INSERT 143 145
FREEZE 163 184 191 INT-LEVEL 181
FSAVE 107 INTERNAL 252
FSUBR 28 31 39 39 55 72 72 73 87 88 INTERRUPT 177 187

94 131147 150 INTERRUPT-HANDLER 184
FUNCT 148174 INTERRUPTS 141176
function 27 IPC-HANDLER 199
FUNCTION 3539768082 IPC-OFF 199
Function 82 IPC-ON 199

ISTORAGE 233
G/LVAL 33148 ISTRING 5663
G=? 70 ITEM 123
G? 70 ITUPLE 78
GASSIGNED? 77 185 IUVECTOR 56
GBOUND? 77 132 IVECTOR 56
GC 184 192
GC-OUMP 101 106 196 JNAME 197
GC-MON 195
GC-READ 101106 196 KEEP-FIXUPS 166259
GOECL 131
GET 52121 L-INS 146
GET-DECL 134 L-OUTS 146

Token Index

268

L=? 70 MEMBER 71
L? 70 MEMQ 71
LAST-OUT 146 MIN 28
LEGAL? 78 82 95 116 118 175 190 209 MOB LIST 139 144
LENGTH 5173 MOD 28
LENGTH? 72 MONAD? 72
LERR\ 148 151 MUDDLE 107 141 --LINK 153
LIST 53 55 56 57 66 70 184 200 207 N==? 70

209 N=? 71
LISTEN 146 149 168 181 NBIN 165
LLOC 116 174 190 NETACC 114 • LMAP\ 93 NETS 115
LOAD 101108 NETSTATE 114
LOCA 117 NEWTYPE 46 132 164 184 190 -,

LOCAS 117 NEXT 123
LOCATIVE 125209 NEXTCHR 95 98 101184
LOCATIVE? 117 NMl 101 259
LOCB 117 NMZ 101 259
LOCO 116 117 190209 NOT 71
LOCL 117 NTH 5186
LOCR 164
LOCS 117 OBLIST 99 138 140 146 168 191
LOCT 117 OBLIST? 139
LOCU 117 OFF 179
LOCV 117 ON 179
LOG 41 OPEN 100 104 110 112 113
LOGOUT 197 OPEN-NR 102
LOOKUP 142 OR 7274
LOSE 565962 OR? 7291
LPARSE 64 142 153 156 ORB 161
LPROG\ 88 OUTCHAN 47 102 146
LVAL 32 37 116 119 168 174 190 203 OVERFLOW 151

MACRO 88156 PARSE 63 142 142 153 156 157
MAIN 172 173 192 PARSE-STRING 156
MANIFEST 131 PARSE-TABLE 153
MANIFEST? 132 PCODE 163
MAPF 8990 PICTURE 113
MAPLEAVE 93 PNAME 22 143212
MAPR 8990 PRIM TYPE 44
MAP RET 92 PRIMTYPE-C 164
MAPSTOP 93 PRINl 98 101 111
MAX 28 PRINC 99 101111
ME 173 192 PRINT 20 23 47 ~ 101 111 140

Token Index

I'

1'11'111'1111\1 'I '1\1\\ ,~rlll\~lf~ll'{l '1\' 1\\\\1 ,,\\ 1\ '1\\\ I'
3 9080 004 083 058 269

PRINTB 101105 RSUBR-LINK 163 259
PRINTSTRING 101105 rubout 17 24 97 112
PRINTTYPE 47 RUNABLE 169
PROCESS 146 168 169 190 214 RUNINT 178
PROG 82 87200 RUNNING 169
PURE-PAGE-LOADER 184 RUN TIMER 186
PURIFY 107 191196
PUT 525467 120 SAVE 107 107 164 196
PUT-DECL 134 SEGMENT 6570154
PUTSITS 161 SEND 198
PUTPROP 120 SEND-WAIT 198
PUTRE'ST 5768 SET 32 33 37 174 184 191

SETG 30 37 41 184 191
QUICK-ENTRY 163253 SETLOC 116 118 119
QUICK-RSUBR 163253 SIN 40
QUIT 198 SLEEP 188
QUITTER 182 SNAME 109
QUOTE 558081 SNH 101 107 109 259

SORT 6071
RANDOM 29 SORTX 60
READ 20 22 98 101 122 139 142 153 SPECIAL 127 156 190 218

184 SPECIAL-CHECK 134
READ-TABLE 153 SPECIAL-MODE 128 134
READA 154 SPLICE 154
READS 101 105 SPNAHE 143
READCHR 95 98 101 104 111 112 184 SQRT 40
READSTRING 101105 111 SQUOTA 247
REALTIMER 186 STACKFORM 94
REDEFINE 40259 STATE 169
REMOVE 142 144 STORAGE 191
RENAME 101110 STORE 247
REP 146 STRCOMP 71
REPEAT 82 87200 STRING 53 56 63 64 99 154 208
RESET 101 102 110 111 STRUCTURED 125
REST 52 54 73 126214 STRUCTURED? 72
RESTORE 107 108 SUBR 28 31147
RESUMABLE 169 Subroutine 28 147
RESUME 169 171172 SUBSTITUTE 196
RESUMER 173 SUBS TRue 5254
RETRY 150217 SUICIDE 173
RETURN 83 88 174
RGLOC 164 T 69
ROOT 140144 TAG 95190
RSUBR 147 162 164 191 TEMPLATE 5465214
RSUBR-ENTRY 147 165 TERPRI 74 99 101

Token Index

270

THIS-PROCESS 173 173 --TIME 197 { 24 54
TO 110
TOP 59210 } 24 54
TOP LEVEL 148
TTYECHO 101112 146
TUPLE 7878 190209
TYI 101 112 184 185
TYPE 20 44 72 92 190 206 213
TYPE-C 164
TYPE-W 164
TYPE? 72
TYPEPRIH 45

UNAME 197
UNASSIGN 33174
UNBOUND 213253
UNMANIFEST 132
UNPARSE 64143
UNSPECIAL 127216218
UNWIND 150218
UTYPE 62
UVECTOR 53 55 56 61 64 200 208 212

VALID-TYPE? 46
VAlRET 198
VALUE 33 124 174
VECTOR 53 55 56 61 184 200 207 211

WORD 159207

XORB 161

[24 53

\ 255399154

] 24 53

.... 4 106

.... @ 17 24 56 97 112

.... 0 17 24 97 112

.... G 17 24 150 182

.... l 1724 97 112

Token Index

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185
	00000186
	00000187
	00000188
	00000189
	00000190
	00000191
	00000192
	00000193
	00000194
	00000195
	00000196
	00000197
	00000198
	00000199
	00000200
	00000201
	00000202
	00000203
	00000204
	00000205
	00000206
	00000207
	00000208
	00000209
	00000210
	00000211
	00000212
	00000213
	00000214
	00000215
	00000216
	00000217
	00000218
	00000219
	00000220
	00000221
	00000222
	00000223
	00000224
	00000225
	00000226
	00000227
	00000228
	00000229
	00000230
	00000231
	00000232
	00000233
	00000234
	00000235
	00000236
	00000237
	00000238
	00000239
	00000240
	00000241
	00000242
	00000243
	00000244
	00000245
	00000246
	00000247
	00000248
	00000249
	00000250
	00000251
	00000252
	00000253
	00000254
	00000255
	00000256
	00000257
	00000258
	00000259
	00000260
	00000261
	00000262
	00000263
	00000264
	00000265
	00000266
	00000267
	00000268
	00000269
	00000270

