Relation

Tads 3
Library Extension

3.0
Contents
4Introduction

5Set

5Metadata

5Meaning

5Cardinality

5Arity

5Set List

6Creation

6Statically-Defined Sets

6Dynamically-Defined Relation Sets

8Element

9Removal

10Comparison

10Membership

10Identical

11Equal

11Subset

11Superset

12Subsets

12Copy

12Subset

12Search

12No Values

13Values

14Operations

14Complements

14Conjunctions

14Disjunctions

14Exclusive Disjunctions

15Power Set

16Relation Set

16Metadata

16Meaning

16Cardinality

16Arity

17Relations Matrix

18Relations List

19Creation

19Statically-Defined Relation Sets

19Dynamically-Defined Relation Sets

21Element

21Relation

21Metadata

21Meaning

21Arity

21Parms List

22Creation

22Statically-defined Relations

22Dynamically-defined Relations

23Removal

25Comparison

25Membership

27Identical

27Equal

27Removal

28Comparison

28Membership

28Identical

29Equal

29Subset

29Superset

30Subsets

30Copy

30Subset

30Search

30No Mask

31Mask

31Wildcard

34Operations

34Complements

34Conjunctions

34Disjunctions

34Exclusive Disjunctions

35Power Set

36Operations

37Negation

38Conjunctions

40Disjunctions

41Exclusive Disjunctions

44Operation Nesting

Introduction
The Relation library extension provides a simple way to define relations and do searches on those relations.

I am indebted to Mike Roberts, for much of the OO design of this module owes its guidance and inspiration to his raif post of “I7-NL blessings”.
Copyright © 2006 by Kevin Forchione. All rights reserved.

Set

Relation sets are abstract datatypes designed to store instances of relations. The RelationSet class defines methods for adding, removing and searching for relations encapsulated by a specific relation set instance, as well as methods for creating copies and instances of itself.

Operations performed on a set return another set.

Metadata

The following metadata is available for sets.
Meaning

The meaning of a set is implied by its name. For statically-defined sets this is provided by the string representation of its symbolic name. For dynamically defined sets the meaning is provided by a string passed to the defining macro.

The name property represents a set’s meaning.

Cardinality
The cardinality of a set represents the number of elements it encapsulates. A set cardinality of 0 represents an empty set.

The cardinality property represents the size of the set.

Arity

Sets have a default arity of 0.

Set List

The following method produces a more intuitive representation of the datatype’s internal representation of elements. The syntax is:

toList()

This method takes no arguments.

For instance, the following statements:

ret = MakeSet('g');

MakeElem(ret, 1);

MakeElem(ret, 2);

MakeElem(ret, 3);

MakeElem(ret, 4, 5, 6);

produce a set whose toList() method returns the following:

[1, 2, 3, 4, 5, 6]
Creation
Sets can be created in one of two ways: statically at compile time or dynamically at runtime. Once created, a set cannot be deleted unless it is de-referenced and garbage collected by the VM. By definition this can never happen to statically-defined sets.

All sets begin life as null sets (size zero) and remain so until elements have been added to them.

Statically-Defined Sets

Statically defining a set is easy:

Set(name);

where name is the set symbolic name. The following defines the set Alpha:

Set(Alpha);

Notice that case-sensitivity is important – the name of the set isn’t constrained by case: alpha and Alpha are both valid and distinct names for sets.

Dynamically-Defined Relation Sets

Dynamically defining a set from within a codeblock is easy using the macro:

MakeSet(nameString, <parms>);

where nameString is the relation set name. The optional parms parameter indicates the initial elements of the set. The following dynamically defines the relation set Alpha, and populates the set with the elements A, B, and C:

MakeSet(‘Alpha’, A,B,C);

The macro returns an anonymous set object in that has no symbolic and must be referenced by object properties or local variables.

Element

The Element() macro is used to statically populate a set. The syntax for statically defining and populating the set is then:

Set(name);

+ Element(value);

+ Element(value);

. . .

Where value is any legal value: a number, string, object, property pointer, etc.

Removal

Removal of a set is defined as reducing its size to zero, thus making it an empty set. This is accomplished with the same macro used to remove a single element.

The syntax for removing all elements from a set is:

Remove(name);

where name is the name of a defined set.

Comparison
The library extension provides the following methods to facilitate set comparison.

Membership

The Set class provides a method for determining whether a value is an element of the set. The syntax is:

hasElement(element)

The method returns a Boolean value if the specified element is found within the set.

For instance:

G.hasElement(1)

will return true if and only if there exists within the set the element represented by:

Element(G, 1)

If no such element has been defined for the set G then the method will return nil.

Identical
Two sets are said to be identical if their meanings are the same and they are equal.

The syntax for this comparison is:

set1.isIdentical(set2)

Note that this comparison does not take cardinality into consideration, but only meaning. Also this comparison is only useful when the meanings of the sets are textually equal as opposed to logically equivalent. Thus in essence we are asking if the sets are related through derivation rather than through operation.

Equal
Two sets are said to be equal if every element of the first set is an element of the second, and every element of the second set is an element of the first.

The syntax for this comparison is:

set1.equals(set2)

Notice that cardinality is not taken into consideration by this definition.

Notice too, that set meaning is not taken into consideration either. For instance, set1 might represent the set of “integers Divisible by 2” while set2 might represent “Even Numbers”.

Subset

One set is said to be a subset of another if every element of the first set is an element of the second.

The syntax for this comparison is:

set1.isSubsetOf(set2)

Superset

One set is said to be a superset of another if every element of the second set is an element of the first.

The syntax for this comparison is:

set1.isSupersetOf(set2)

Subsets

Operations on sets produce sets. So do removal of elements, which alters the original set as well as returning a set whose members are the removed elements. But there are also some specific ways to produce subsets of a set.

Copy

The createCopy() method is a method defined on SetObject which returns a dynamically-created instance of the set. Since the internal representation of the element collection is rebuilt, as it were, from the original the copy is unaffected by any operations affecting the original.

The copy is equal to the original.

Subset
The subset() method is a method defined on SetObject which returns a dynamically-created instance of the set. The method takes a function which should return true if the element is to be included in the subset and nil otherwise. The name of the subset will be the generic S(name) where name is the name of the original set.

Search

Searching produces a subset of the original set, while leaving the original unaltered. The subset may or may not be equal to the original depending on the parameters of the search.

You can search for matches using the syntax:

Search(name <, parm1, parm2,..., parmn>);

The return value is a set whose elements correspond to the matches found in the named set.

No Values
A search that doesn’t provide a parameter list, but merely the name of the set produces a subset that is equal to the original. This is functionally equivalent to issuing a createCopy() on the original set.

Values
The parameter list of the search macro are used to exactly match elements within the set.

For instance:

Search(Alpha, A, B)

returns a set whose toList is [A, B].

Operations

The SetObject class defines the following set operation methods:
Complements
Returns a set that is the complement of this set and its arguments. The syntax is:
complement([sets])

For instance:
A.compliment(B,C,D) == (D - (C - (B – A)))
Conjunctions
Returns a set that is the intersect of this set and its arguments. The syntax is:

intersect([sets])

For instance:

A.intersect(B,C,D) == (D ∩ (C ∩ (B ∩ A)))
Disjunctions
Returns a set that is the union of this set and its arguments. The syntax is:

union([sets])

For instance:

A.union(B,C,D) == (D U (C U (B U A)))
Exclusive Disjunctions
Returns a set that is the exclusive disjunction of this set and its arguments. The syntax is:

xor([sets])

For instance:

A.xor(B) == (A ∩ (A – B)) U (B ∩ (B - A))
Power Set
Returns a set that is the power set of this set. The power set is a set of all subsets for the set. The syntax is:

powerset()
For instance:

A == {1,2,3}

A.powerset() == { {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} {1,2,3}}
The code for defining this would be:

Set(A)

+ Element(1);

+ Element(2);

+ Element(3);

Then the statement:

A.powerset();

would produce a set with the following toList():

[obj#da0,obj#d9b,obj#d94,obj#d8c,obj#d84,obj#d7b,obj#d72,obj#d69]

Where each object is a set corresponding to the subsets of the powerset P(A).
Relation Set

Relation sets are abstract datatypes designed to store instances of relations. The RelationSet class defines methods for adding, removing and searching for relations encapsulated by a specific relation set instance, as well as methods for creating copies and instances of itself.
Operations performed on a relation set return another relation set, unless those operations involve a set that is not a relation set.

Metadata

The following metadata is available for relation sets.
Meaning

The meaning of a relation set is implied by its name. For statically-defined relation sets this is provided by the string representation of its symbolic name. For dynamically-defined relation sets the meaning is provided by a string passed to the defining macro.

The name property represents a relation set’s meaning.

Cardinality
The cardinality of a relation set represents the number of relations it encapsulates. A relation set cardinality of 0 represents an empty set.

The cardinality property represents the size of the relation set.

Arity
Relation sets encapsulate instances of relations of varying arity. The relation set has an arity representing the maximum arity of its relations.
Because relations are designed to represent arity n > 0, a relation set arity of 0 represents an empty set.
The arity property represents the maximum arity of the relation set.

Relations Matrix

The internal details of a relation set are manipulated by converting the set to a specially formatted matrix by using the following method.
toMatrix()

This method takes no arguments and produces a list of sublists having the following format:

[

[results for parm1],

[results for parm2],

[results for ...],

[results for parmn]

]

The maximum number of sublists corresponds to the arity of the relation set. Each sublist represents a parameter position of its relations. Any relations with an arity less than that of the relation set will have its remaining positions within the matrix padded with null.

The length of each sublist corresponds to the number of relations contained within the relation set.

Thus for the following statements:

ret = MakeRelSet('g');

MakeElem(ret, 1);

MakeElem(ret, 1, 1);

MakeElem(ret, 1, 2);

MakeElem(ret, 1, 1, 3);

The matrix will look like this:

[

[1,

1,

1,

1],

[null,
1,

2,

1],

[null,
null,

null,

3]

]

To interpret the matrix begin by concatenating index n of each sublist and then eliminate any null value from the concatenation. This represents the parms of the nth relation encapsulated within the relation set.

Thus we have the following 4 relations within the relation set:

‘g’(1, null, null)
=> ‘g’(1)
‘g’(1, 1, null)

=> ‘g’(1, 1)
‘g’(1, 2, null)

=> ‘g’(1, 2)
‘g’(1, 1, 3)

=> ‘g’(1, 1, 3)
Relations List

While the relation set matrix is useful for manipulating sets, the following method produces a more intuitive representation of the datatype’s internal representation of relations. The syntax is:

toList()

This method takes no arguments.

For instance, the following statements:

ret = MakeRelSet('g');

MakeElem(ret, 1);

MakeElem(ret, 1, 1);

MakeElem(ret, 1, 2);

MakeElem(ret, 1, 1, 3);

produce a relation set whose toList() method returns the following:

[

[1],

[1, 1],

[1, 2],

[1, 1, 3]

]

with each sublist corresponding to one of the relations defined above.

Creation
Relation Sets can be created in one of two ways: statically at compile time or dynamically at runtime. Once created, a relation set cannot be deleted unless it is de-referenced and garbage collected by the VM. By definition this can never happen to statically-defined relation sets.
All relation sets begin life as null sets (size zero) and remain so until elements have been added to them.

Statically-Defined Relation Sets
Statically defining a relation set is easy:

RelSet(name);

where name is the relation set symbolic name. The following defines the relation set Woman:

RelSet(Woman);

Notice that case-sensitivity is important – the name of the relation isn’t constrained by case: woman and Woman are both valid and distinct names for relation sets.

Dynamically-Defined Relation Sets

Dynamically defining a relation set from within a codeblock is easy using the macro:

MakeRelSet(nameString);

where nameString is the relation set name. The following dynamically defines the relation set Horse:

MakeRelSet(‘Horse’);

The macro returns an anonymous relation set object in that it has no symbolic and must be referenced by object properties or local variables.
Element

The Element() macro is used to statically populate a relation set. The syntax for statically defining and populating the relation set is then:

RelSet(name);

+ Element(parm1 <,parm2, ..., parmn>);

+ Element(parm1 <,parm2, ..., parmn>);

. . .

Where parmx is any legal value: a number, string, object, property pointer, etc. forming the parameters of the relation to be created for the relation set.

Relation

A Relation is an abstract datatype that represents attribution a given parameter value, or a relationship between more than one parameter value.

Every relation is a member of one and only one relation set.

Metadata

The following metadata is available for relations.
Meaning

Meaning is implied through membership in a relation set. While a relation belongs to one and only one relation set, the parameter values encapsulated by the relation may belong to other relations.

Arity

The number of parameter values encapsulated by a relation is known as its “arity”.

All relations are of arity n > 0.

Parms List

The toList() method produces a list representation of the datatype’s internal representation of parameters.

Creation

Statically-defined Relations

The syntax for statically defining relations is:

RelSet(name);

+ Element(parm1 <, parm2,..., parmn>);

where name is the name of a defined relation set and parmx is any value at all. The Relation library extension is designed for arity n > 0. There can be any number of parameters defined.

For instance:

RelSet(Woman);

+ Element(jean);

could be interpreted as “jean is a member of the relation set Woman” or simply as “jean is a Woman”.

Dynamically-defined Relations

The syntax for dynamically defining relations from within a codeblock is:

MakeElem(name, parm1 <, parm2,..., parmn>);

where name is the name of a defined relation set and parmx is any value at all. For instance:

MakeElem(Woman, jean);

would create the relationship “jean is a Woman” during runtime when the statement is evaluated.

Removal

The syntax for removing a relation, whether statically or dynamically defined, from a relation set is:

Remove(name <, parm1, parm2,..., parmn>);

where name is the name of a defined relation set and parmx is a value used as part of the mask for matching the relation(s) to be removed. For instance:

Remove(Woman, any);

will remove all of the relations of arity == 1 from the Woman relation set.

The return value is a new relation set composed of all the relations that have been removed. For instance, for the following definitions:

RelSet(Woman);

+ Element(jean);

+ Element(jane);

+ Element(joan);

+ Element(pat);

The relation set toList() would be:

[

[jean],

[jane],

[joan],

[pat]

]

The statement:

Remove(Woman, joan);

removes the relation defined by Element(joan) from the Woman relation set. The toList() of Woman now returns:

[

[jean],

[jane],

[pat]

]

while the Remove() statement returns a new relation set derived from and also named Woman, whose toList() returns:

[

[joan]

]

The Remove() statement alters the original relation set, while returning a new relation set encapsulating the removed relations.

Comparison

The RelationObject class provides the following methods to facilitate comparisons.

Membership

By definition a relation derives its meaning from its relation set. It is trivial, therefore, to speak of membership for a given relation instance. Instead we can interrogate the RelationObject class for useful membership information, providing a parameter sequence and a relation set to determine if the parameter sequence has membership within the relation set.

The syntax is:

RelationObject.isMemberOf(parms, relationSet)

The argument parms should be a list of the parameter sequence being investigated.

This method simply returns relationSet.hasMember(parms…), but is provided for completeness.

The second membership method returns a list of relation sets for which the parameter sequence forms a relation. The syntax is:

getMembershipList([parms])

For instance, given the following statements:

RelSet(Woman);

+ Element(jean);

+ Element(jane);

+ Element(joan);

+ Element(pat);

RelSet(Healthy);

+ Element(jim);

+ Element(jean);

+ Element(jane);

RelSet(Wealthy);

+ Element(jim);

+ Element(jean);

+ Element(jane);

RelSet(Wise);

+ Element(jean);

The statement:

RelationObject.getMembershipList(jean)

Returns the following list:

[Woman, Healthy, Wealthy, Wise]

Identical

Two relations are said to be identical if their meanings are the same and they are equal.

The syntax is:

relation1.isIdentical(relation1)

This comparison is only useful when the meanings of the relations are textually equal as opposed to logically equivalent. Thus in essence we are asking if the relation sets of the objects are related through derivation rather than through operation.

Equal

Two relations are said to be equal if their corresponding parameters match.

The syntax is:

relation1.equals(relation1)

Removal

Removal of a relation set is defined as reducing its size to zero, thus making it an empty set. This is accomplished with the same macro used to remove a single relation.
The syntax for removing all relations from a relation set is:

Remove(name);

where name is the name of a defined relation set.

Comparison
The library extension provides the following methods to facilitate relation set comparison.

Membership

The RelationSet class provides a method for determining whether a relation is an element of the relation set. The syntax is:

hasElement([parms])

Note that this is not based on relation objects, which are only abstract encapsulations for relations, but is based rather, as for Search(), on the parameters of the relation.

The determination of relation set membership is distinct from searching in that it is restricted to returning a Boolean value if the specific series of parameters of a relation are found within the relation set.

For instance:

Woman.hasElement(Any)

will return true if and only if there exists within the relation set the relation represented by:

Element(Woman, any)

If no such relation has been defined for the relation set Woman then the method will return nil.

Identical
Two relation sets are said to be identical if their meanings are the same and they are equal.

The syntax for this comparison is:

relationSet1.isIdentical(relationSet2)

Note that this comparison does not take size into consideration, but only meaning. Also this comparison is only useful when the meanings of the relations are textually equal as opposed to logically equivalent. Thus in essence we are asking if the relation sets of the objects are related through derivation rather than through operation.

Equal
Two relation sets are said to be equal if every member of the first relation set is a member of the second, and every member of the second relation set is a member of the first.

The syntax for this comparison is:

relationSet1.equals(relationSet2)

Notice that size is not taken into consideration by this definition. Thus the relation sets producing the following toLists() are considered congruent even though their lists are not:

relationSet1 .toList() ([[jean], [jane]]

relationSet1 .toList() ([[jean], [jane], [jean]]

Notice too, that relation set meaning is not taken into consideration either. For instance, relationSet1 might represent the set of “Woman” while relationSet2 might represent “And(Woman, Wise”.

Subset

One relation set is said to be a subset of another if every member of the first relation set is a member of the second.

The syntax for this comparison is:

relationSet1.isSubsetOf(relationSet2)

Superset

One relation set is said to be a superset of another if every member of the second relation set is a member of the first.

The syntax for this comparison is:

relationSet1.isSupersetOf(relationSet2)

Subsets

Operations on relation sets produce relation sets. So does removal of relations, which alters the original relation set as well as returning a relation set whose members are the removed relations. But there are also some specific ways to produce subsets of a relation set.

Copy

The createCopy() method is a method defined on RelationSet which returns a dynamically-created instance of the relation set. Since the internal representation of the relation collection is rebuilt, as it were, from the original the copy is unaffected by any operations affecting the original.

The copy is equal to the original.

Subset
The subset() method is a method defined on RelationSetObject which returns a dynamically-created instance of the relation set. The method takes a function which should return true if the relation is to be included in the subset and nil otherwise. The name of the subset will be the generic S(name) where name is the name of the original relation set.

Search

Searching produces a subset of the original relation set, while leaving the original unaltered. The subset may or may not be equal to the original depending on the parameters of the search.

Each instance of a relation is stored within its associated relation set. You can search for matches using the syntax:

Search(name <, parm1, parm2,..., parmn>);

The return value is a relation set whose elements correspond to the matches found in the named relation set.

No Mask

A search that doesn’t provide a parameter list, but merely the name of the relation set produces a subset that is equal to the original. This is functionally equivalent to issuing a createCopy() on the original relation set.

Mask

The parameter list of the search macro is called the mask and is the basic pattern of the search. To successfully match a relation, the length of the mask must match the length of the parameter list of the relation under evaluation. Also each parameter of the mask must match the corresponding parameter of the relation.

For instance:

Search(Woman, jean)

returns a relation set whose matrix is [[jean]].

To help illustrate:

RelSet(foo);

+ Element(parm1, parm2, … , parmn);

The statement:

Search(foo, parm1, parm2, ... , parmn)

produces a relation set whose matrix has the following format:

[

[results for parm1],

[results for parm2],

[results for ...],

[results for parmn]

]
Wildcard

The library extension provides a single wildcard for searches. This is the any enumerator. The presence of the any enumerator as a parameter in a search matches on any corresponding parameter value.

Suppose we have the following definitions:

RelSet(Woman);

+ Element(jean);

+ Element(jane);

+ Element(joan);

+ Element(pat);

The wildcard search statement:

Search(Woman, any)

produces a relation set whose matrix is the following:

[[jean, jane, joan, pat]]
The following definitions:

RelSet(f);

+ Element(1, 1);

+ Element(1, 2);

+ Element(1, 3);

+ Element(2, 1);

+ Element(2, 2);

produces a relation set for

Search(f, any, any)

with the following matrix:

[

[1, 1, 1, 2, 2],

[1, 2, 3, 1, 2]

]

The first sublist representing matches for the first parameter, the second sublist for the second parameter.

The relation set toList() reveals the following relations:

[

[1, 1],

[1, 2],

[1, 3],

[2, 1],

[2, 2]

]
Notice that the statement:

Search(f, 1, any)

produces relation set with the following matrix:

[

[1, 1, 1],

[1, 2, 3]

]

There are 3 values for the first parameter list, and 3 for the second. This is because a Search provided with a non-zero length mask must match a relation whose parameter list is equal to the length of the mask.

Observation of the relation definitions above reveal that there are only 3 such relations that would match this search, hence there are only 3 values returned for each parameter list. The toList() method returns:

[

[1, 1],

[1, 2],

[1, 3]

]

Operations

The RelationSetObject class defines the following set operation methods. Any operation performed with a set that is not a relation set will return a set of that class, not a relation set.
Complements
Returns a set that is the complement of this set and its arguments. The syntax is:

complement([sets])

For instance:

A.compliment(B,C,D) == (D - (C - (B – A)))
Conjunctions
Returns a set that is the intersect of this set and its arguments. The syntax is:

intersect([sets])

For instance:

A.intersect(B,C,D) == (D ∩ (C ∩ (B ∩ A)))
Disjunctions
Returns a set that is the union of this set and its arguments. The syntax is:

union([sets])

For instance:

A.union(B,C,D) == (D U (C U (B U A)))
Exclusive Disjunctions
Returns a set that is the exclusive disjunction of this set and its arguments. The syntax is:

xor([sets])

For instance:

A.xor(B) == (A ∩ (A – B)) U (B ∩ (B - A))
Power Set
Returns a set that is the power set of this set. The power set is a set of all subsets for the set. The syntax is:

powerset()
For instance:

A == {1,2,3}

A.powerset() == { {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} {1,2,3}}
The code for defining this would be:

Set(A)

+ Element(1);

+ Element(2);

+ Element(3);

Then the statement:

A.powerset();

would produce a set with the following toList():

[obj#da0,obj#d9b,obj#d94,obj#d8c,obj#d84,obj#d7b,obj#d72,obj#d69]

Where each object is a set corresponding to the subsets of the powerset P(A).

Operations

Several set operations can be performed on sets via macros. The result of each operation is a new set. For convenience the names of the macro operations have been given non-set theory names.

Not
(Complement

And
(Intersection

Or
(Union
Xor
(Outside Union
Negation
Negation (complements) can be performed on sets using the Not() function. The function syntax is as follows:

Not(set1, <universalSet2>);

The parameters of the Not() statement are a set and an optional universal set constraint. If no constraint is provided then the statement uses the entire set domain (all set instances) as the universal from which to derive the complement.
For example, for the following definitions:

RelSet(f);

+ Element(1, 1);

+ Element(1, 2);

+ Element(1, 3);

+ Element(2, 1);

+ Element(2, 2);
The statement:
Not(Search(f, 1, any), Search(f))

produces a relation set with the following matrix:

[

[2, 2],

[1, 2]

]

The toList() translates into 'Not(f(1, any){f})' relations:

[

[2, 1],

[2, 2]

]
Conjunctions

Conjunctions (intersections) can be performed on sets using the And() function. The function syntax is as follows:

And(set1, set2 <, ..., setn>);

For example, the following definitions:

RelSet(Woman);

+ Element(jean);

+ Element(jane);

+ Element(joan);

+ Element(pat);

RelSet(Healthy);

+ Element(jim);

+ Element(jean);

+ Element(jane);

RelSet(Wealthy);

+ Element(jim);

+ Element(jean);

+ Element(jane);

RelSet(Wise);

+ Element(jean);

The statement:

And(Search(Woman, any), Search(Healthy, any))
produces a relation set with the following matrix:

[

[jean, jane]

]

while toList() returns:

[

[jean],

[jane]

]

Disjunctions

Disjunctions (unions) can be performed on sets using the Or() function. The function syntax is as follows:

Or(set1, set2 <, ..., setn>);

For example, for the following definitions:

RelSet(f);

+ Element(1, 1);

+ Element(1, 2);

+ Element(1, 3);

+ Element(2, 1);

+ Element(2, 2);

The statement:

Or(Search(f, 1, 1), Search(f, 2, 2)):
produces the following relation set matrix:

[

[1, 2],

[1, 2]

]

while toList() returns:

[

[1, 1],

[2, 2]

]

Exclusive Disjunctions
An exclusive disjunction can be performed on sets using the Xor() function. Exclusive disjunction is the logical equivalent of the compound statement:
Or(
And(p, Not(q)),
And(Not(p), q)

)
The function syntax is as follows:

Xor(set1, set2);
Alternatively we can specify a universal set constraint for each of the sets by using a list for each parameter:

Xor([set1, univSet1], [set2, univSet2]);
For example, the following definitions:

RelSet(Woman);

+ Element(jean);

+ Element(jane);

+ Element(joan);

+ Element(pat);

The statement:

Xor([Search(Woman, jean), Woman], [Search(Woman, pat), Woman]);
produces a relation set with the following matrix:
[

[jean, pat]
]

while toList() returns:

[

[jean],

[pat]

]
To better understand the result, we can look at the following Venn Diagram:

[image: image1]
From this we can see that the intersection of Search(Woman, jean) and Not(Search(Woman, pat), Woman) is the set {jean}.

Likewise the intersection of Search(Woman, pat) and Not(Search(Woman, jean), Woman) is the set {pat}.
The union of these two intersections then is the set {jean, pat}.

Operation Nesting
Because the result of Search(), Not(), And(), Or(), and Xor() is a set, it is possible to combine these statements into compound statements. For instance, for the following statements:
RelSet(Woman);

+ Element(jean);

+ Element(jane);

+ Element(joan);

+ Element(pat);

RelSet(Healthy);

+ Element(jim);

+ Element(jean);

+ Element(jane);

RelSet(Wealthy);

+ Element(jim);

+ Element(jean);

+ Element(jane);

RelSet(Wise);

+ Element(jean);

The statement:

 ret = Or(

 And(Search(Woman, any), Search(Healthy, any)),

 And(Search(Woman, any), Search(Wealthy, any)),

 And(Search(Woman, any), Search(Wise, any)));

produces a relation set with the following matrix:

[

[jean, jane, jean, jane, jean]
]
while toList() returns:

[

[jean],

[jane],

[jean],

[jane],

[jean]

]

This is exactly the result one would get from the following prolog statements:

woman(jean).

woman(jane).

woman(joan).

woman(pat).

healthy(jim).

healthy(jean).

healthy(jane).

wealthy(jim).

wealthy(jean).

wealthy(jane).

wise(jean).

happy(P) :- healthy(P), woman(P).

happy(P) :- wealthy(P), woman(P).

happy(P) :- wise(P), woman(P).

for the query:

happy(X).

((P * ~Q) V (~P * Q))

jane

joan

jean

jane

joan

pat

Copyright © 2006 by Kevin Forchione. All rights reserved.

