
1 Services

1/main: Main.w To parse command-line arguments and take the necessary steps to obey them.
1/mem: Memory.w To allocate memory suitable for the dynamic creation of objects of different sizes, placing
some larger objects automatically into doubly linked lists and assigning each a unique allocation ID number.
1/text: Text Files.w To read text files of whatever flavour, one line at a time.
1/blurb: Blurb Parser.w To read and follow the instructions in the blurb file, our main input.

Main 1/main

Purpose
To parse command-line arguments and take the necessary steps to obey them.

1/main.§1-8 Main; §9-10 Time; §11-13 Opening and closing banners

Definitions

¶1. We will need the following:

#include "stdlib.h"

#include "stdio.h"

#include "string.h"

#include "time.h"

#include "ctype.h"

¶2. We identify which platform we’re running on thus:

define OSX_PLATFORM 1

define WINDOWS_PLATFORM 2

define UNIX_PLATFORM 3

¶3. Since we use flexible-sized memory allocation, cblorb contains few hard maxima on the size or com-
plexity of its input, but:

define MAX_FILENAME_LENGTH 10240 total length of pathname including leaf and extension

define MAX_EXTENSION_LENGTH 32 extension part of filename, for auxiliary files

define MAX_VAR_NAME_LENGTH 32 length of name of placeholder variable like “[AUTHOR]”

define MAX_TEXT_FILE_LINE_LENGTH 51200 for any single line in the project’s source text

define MAX_SOURCE_TEXT_LINES 2000000000; enough for 300 copies of the Linux kernel source – plenty!

¶4. Miscellaneous settings:

define VERSION "cBlorb 1.2"

define TRUE 1

define FALSE 0

¶5. The following variables record HTML and Javascript-related points where cblorb needs to behave
differently on the different platforms. The default values here aren’t actually correct for any platform as
they stand: in the main routine below, we set them as needed.

char SEP_CHAR = ’/’; local file-system filename separator

char *FONT_TAG = "size=2"; contents of a tag

char *JAVASCRIPT_PRELUDE = "javascript:window.Project."; calling prefix

int escape_openUrl = FALSE, escape_fileUrl = FALSE;

int reverse_slash_openUrl = FALSE, reverse_slash_fileUrl = FALSE;

1/main - Main ¶6 3

¶6. Some global variables:

int trace_mode = FALSE; print diagnostics to stdout while running?

int error_count = 0; number of error messages produced so far

int current_year_AD = 0; e.g., 2008

int blorb_file_size = 0; size in bytes of the blorb file written

int no_pictures_included = 0; number of picture resources included in the blorb

int no_sounds_included = 0; number of sound resources included in the blorb

int HTML_pages_created = 0; number of pages created in the website, if any

int source_HTML_pages_created = 0; number of those holding source

int use_css_code_styles = FALSE; use markings when setting code

char project_folder[MAX_FILENAME_LENGTH]; pathname of I7 project folder, if any

char release_folder[MAX_FILENAME_LENGTH]; pathname of folder for website to write, if any

char status_template[MAX_FILENAME_LENGTH]; filename of report HTML page template, if any

char status_file[MAX_FILENAME_LENGTH]; filename of report HTML page to write, if any

int cover_exists = FALSE; an image is specified as cover art

int default_cover_used = FALSE; but it’s only the default supplied by Inform

int cover_is_in_JPEG_format = TRUE; as opposed to PNG format

1/main - Main §1 4

§1. Main. Like most programs, this one parses command-line arguments, sets things up, reads the input
and then writes the output.
That’s a little over-simplified, though, because it also produces auxiliary outputs along the way, in the course
of parsing the blurb file. The blorb file is only the main output – there might also be a web page and a
solution file, for instance.

int main(int argc, char *argv[]) {

int platform, produce_help;

char blurb_filename[MAX_FILENAME_LENGTH];

char blorb_filename[MAX_FILENAME_LENGTH];

〈Make the default settings 2〉;
〈Parse command-line arguments 3〉;
start_memory();

establish_time();

initialise_placeholders();

print_banner();

if (produce_help) { 〈Produce help 6〉; return 0; }

parse_blurb_file(blurb_filename);

write_blorb_file(blorb_filename);

create_requested_material();

print_report();

free_memory();

if (error_count > 0) return 1;

return 0;

}

The function main is where execution begins.

§2.

〈Make the default settings 2〉 ≡
platform = OSX_PLATFORM;

produce_help = FALSE;

release_folder[0] = 0;

project_folder[0] = 0;

status_file[0] = 0;

status_template[0] = 0;

strcpy(blurb_filename, "Release.blurb");

strcpy(blorb_filename, "story.zblorb");

This code is used in §1.

1/main - Main §3 5

§3.

〈Parse command-line arguments 3〉 ≡
int arg, names;

for (arg = 1, names = 0; arg < argc; arg++) {

char *p = argv[arg];

if (strlen(p) >= MAX_FILENAME_LENGTH) {

fprintf(stderr, "cblorb: command line argument %d too long\n", arg+1);

return 1;

}

〈Parse an individual command-line argument 4〉;
}

〈Set platform-dependent HTML and Javascript variables 5〉;
if (project_folder[0] != 0) {

if (names > 0) 〈Command line syntax error 7〉;
sprintf(blurb_filename, "%s%cRelease.blurb", project_folder, SEP_CHAR);

sprintf(blorb_filename, "%s%cBuild%coutput.zblorb", project_folder, SEP_CHAR, SEP_CHAR);

}

if (trace_mode)

printf("! Blurb in: <%s>\n! Blorb out: <%s>\n",

blurb_filename, blorb_filename);

This code is used in §1.

§4.

〈Parse an individual command-line argument 4〉 ≡
if (strcmp(p, "-help") == 0) { produce_help = TRUE; continue; }

if (strcmp(p, "-osx") == 0) { platform = OSX_PLATFORM; continue; }

if (strcmp(p, "-windows") == 0) { platform = WINDOWS_PLATFORM; continue; }

if (strcmp(p, "-unix") == 0) { platform = UNIX_PLATFORM; continue; }

if (strcmp(p, "-trace") == 0) { trace_mode = TRUE; continue; }

if (strcmp(p, "-project") == 0) {

arg++; if (arg == argc) 〈Command line syntax error 7〉;
strcpy(project_folder, argv[arg]);

continue;

}

if (p[0] == ’-’) 〈Command line syntax error 7〉;
names++;

switch (names) {

case 1: strcpy(blurb_filename, p); break;

case 2: strcpy(blorb_filename, p); break;

default: 〈Command line syntax error 7〉;
}

This code is used in §3.

1/main - Main §5 6

§5. Now let’s set the platform-dependent variables – all of which depend only on the value of platform.
cblorb generates quite a variety of HTML, for instance to create websites, but the tricky points below affect
only one special page not browsed by the general public: the results page usually called StatusCblorb.html

(though this depends on how the status command is used in the blurb). The results page is intended only for
viewing within the Inform user interface, and it expects to have two Javascript functions available, openUrl
and fileUrl. Because the object structure has needed to be different for the Windows and OS X user interface
implementations of Javascript, we abstract the prefix for these function calls into the JAVASCRIPT_PRELUDE.
Thus

...

causes a link, when clicked, to call the openUrl function, where *** is the prelude; similarly for fileUrl. The
first opens a URL in the local operating system’s default web browser, the second opens a file (identified
by a file:... URL) in the local operating system. These two URLs may need treatment to handle special
characters:
(a) “escaping”, where spaces in the URL are escaped to %2520, which within a Javascript string literal

produces %20, the standard way to represent a space in a web URL;
(b) “reversing slashes”, where backslashes are converted to forward slashes – useful if the separation char-

acter is a backslash, as on Windows, since backslashes are escape characters in Javascript literals.

〈Set platform-dependent HTML and Javascript variables 5〉 ≡
if (platform == OSX_PLATFORM) {

FONT_TAG = "face=\"lucida grande,geneva,arial,tahoma,verdana,helvetica,helv\" size=2";

escape_openUrl = TRUE; OS X requires openUrl to escape, and fileUrl not to

}

if (platform == WINDOWS_PLATFORM) {

SEP_CHAR = ’\\’;

JAVASCRIPT_PRELUDE = "javascript:external.Project.";

reverse_slash_openUrl = TRUE; reverse_slash_fileUrl = TRUE;

}

This code is used in §3.

§6.

〈Produce help 6〉 ≡
printf("This is cblorb, a component of Inform 7 for packaging up IF materials.\n\n");

〈Show command line usage 8〉;
summarise_blurb();

This code is used in §1.

§7.

〈Command line syntax error 7〉 ≡
〈Show command line usage 8〉;
return 1;

This code is used in §3,4.

1/main - Main §8 7

§8.

〈Show command line usage 8〉 ≡
printf("usage: cblorb -platform [-options] [blurbfile [blorbfile]]\n\n");

printf(" Where -platform should be -osx (default), -windows, or -unix\n");

printf(" As an alternative to giving filenames for the blurb and blorb,\n");

printf(" -project Whatever.inform\n");

printf(" sets blurbfile and blorbfile names to the natural choices.\n");

printf(" The other possible options are:\n");

printf(" -help ... print this usage summary\n");

printf(" -trace ... print diagnostic information during run\n");

This code is used in §6,7.

§9. Time. It wouldn’t be a tremendous disaster if the host OS had no access to an accurate time of day,
in fact.

time_t the_present;

struct tm *here_and_now;

void establish_time(void) {

the_present = time(NULL);

here_and_now = localtime(&the_present);

}

The function establish time is.

§10. The placeholder variable [YEAR] is initialised to the year in which cBlorb runs, according to the host
operating system, at least. (It can of course then be overridden by commands in the blurb file, and Inform
always does this in the blurb files it writes. But it leaves [DATESTAMP] and [TIMESTAMP] alone.)

void initialise_time_variables(void) {

char datestamp[100], infocom[100], timestamp[100];

char *weekdays[] = { "Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday" };

char *months[] = { "January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December" };

set_placeholder_to_number("YEAR", here_and_now->tm_year+1900);

sprintf(datestamp, "%s %d %s %d", weekdays[here_and_now->tm_wday],

here_and_now->tm_mday, months[here_and_now->tm_mon], here_and_now->tm_year+1900);

sprintf(infocom, "%02d%02d%02d",

here_and_now->tm_year-100, here_and_now->tm_mon + 1, here_and_now->tm_mday);

sprintf(timestamp, "%02d:%02d.%02d", here_and_now->tm_hour,

here_and_now->tm_min, here_and_now->tm_sec);

set_placeholder_to("DATESTAMP", datestamp, 0);

set_placeholder_to("INFOCOMDATESTAMP", infocom, 0);

set_placeholder_to("TIMESTAMP", timestamp, 0);

}

The function initialise time variables is called from 3/place.

1/main - Main §11 8

§11. Opening and closing banners. Note that cBlorb customarily prints informational messages with
an initial !, so that the piped output from cBlorb could be used as an Include file in I6 code; that isn’t in
fact how I7 uses cBlorb, but it’s traditional for blorbing programs to do this.

void print_banner(void) {

printf("! %s [executing on %s at %s]\n",

VERSION, read_placeholder("DATESTAMP"), read_placeholder("TIMESTAMP"));

printf("! The blorb spell (safely protect a small object ");

printf("as though in a strong box).\n");

}

The function print banner is.

§12. The concluding banner is much smaller – empty if all went well, a single comment line if not. But
we also generate the status report page (if that has been requested) – a single HTML file generated from a
template by expanding placeholders in the template. All of the meat of the report is in those placeholders,
of course; the template contains only some fancy formatting.

void print_report(void) {

if (error_count > 0) printf("! Completed: %d error(s)\n", error_count);

〈Set a whole pile of placeholders which will be needed to generate the status page 13〉;
if (status_template[0]) web_copy(status_template, status_file);

}

The function print report is called from 1/text.

§13. If it isn’t apparent what these placeholders do, take a look at the template file for StatusCblorb.html

in the Inform application – that’s where they’re used.

〈Set a whole pile of placeholders which will be needed to generate the status page 13〉 ≡
if (error_count > 0) {

set_placeholder_to("CBLORBSTATUS", "Failed", 0);

set_placeholder_to("CBLORBSTATUSIMAGE", "inform:/cblorb_failed.png", 0);

set_placeholder_to("CBLORBSTATUSTEXT",

"Inform translated your source text as usual, to manufacture a ’story "

"file’: all of that worked fine. But the Release then went wrong, for "

"the following reason:<p>[CBLORBERRORS]", 0

);

} else {

set_placeholder_to("CBLORBERRORS", "No problems occurred", 0);

set_placeholder_to("CBLORBSTATUS", "Succeeded", 0);

set_placeholder_to("CBLORBSTATUSIMAGE", "file://[SMALLCOVER]", 0);

set_placeholder_to("CBLORBSTATUSTEXT",

"All went well. I’ve put the released material into the ’Release’ subfolder "

"of the Materials folder for the project: you can take a look with "

"the menu option Release > Open Materials Folder or by clicking "

"the blue folders above.<p>"

"Releases can range in size from a single blorb file to a medium-sized website. "

"Here’s what we currently have:<p>", 0

);

report_requested_material("CBLORBSTATUSTEXT");

}

if (blorb_file_size > 0) {

set_placeholder_to_number("BLORBFILESIZE", blorb_file_size/1024);

1/main - Main §13 9

set_placeholder_to_number("BLORBFILEPICTURES", no_pictures_included);

set_placeholder_to_number("BLORBFILESOUNDS", no_sounds_included);

printf("! Completed: wrote blorb file of size %d bytes ", blorb_file_size);

printf("(%d picture(s), %d sound(s))\n", no_pictures_included, no_sounds_included);

} else {

set_placeholder_to_number("BLORBFILESIZE", 0);

set_placeholder_to_number("BLORBFILEPICTURES", 0);

set_placeholder_to_number("BLORBFILESOUNDS", 0);

printf("! Completed: no blorb output requested\n");

}

This code is used in §12.

